/* * Copyright 2010 Rockchip Electronics S.LSI Co. LTD * * Licensed under the Apache License, Versdrm 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITDRMS OF ANY KIND, either express or implied. * See the License for the specific language governing permissdrms and * limitatdrms under the License. */ #define MODULE_TAG "mpp_dma_heap" #include #include #include #include #include #include "os_mem.h" #include "allocator_dma_heap.h" #include "mpp_env.h" #include "mpp_mem.h" #include "mpp_lock.h" #include "mpp_debug.h" #include "mpp_common.h" #include "mpp_thread.h" #include "mpp_runtime.h" #define DMA_HEAP_VALID_FD_FLAGS (O_CLOEXEC | O_ACCMODE) #define DMA_HEAP_VALID_HEAP_FLAGS (0) struct dma_heap_allocation_data { RK_U64 len; RK_U32 fd; RK_U32 fd_flags; RK_U64 heap_flags; }; #define DMA_HEAP_IOC_MAGIC 'H' #define DMA_HEAP_IOCTL_ALLOC _IOWR(DMA_HEAP_IOC_MAGIC, 0x0, struct dma_heap_allocation_data) static RK_U32 dma_heap_debug = 0; #define DMA_HEAP_OPS (0x00000001) #define DMA_HEAP_DEVICE (0x00000002) #define DMA_HEAP_IOCTL (0x00000004) #define DMA_HEAP_CHECK (0x00000008) #define dma_heap_dbg(flag, fmt, ...) _mpp_dbg(dma_heap_debug, flag, fmt, ## __VA_ARGS__) #define dma_heap_dbg_f(flag, fmt, ...) _mpp_dbg_f(dma_heap_debug, flag, fmt, ## __VA_ARGS__) #define dma_heap_dbg_ops(fmt, ...) dma_heap_dbg(DMA_HEAP_OPS, fmt, ## __VA_ARGS__) #define dma_heap_dbg_dev(fmt, ...) dma_heap_dbg(DMA_HEAP_DEVICE, fmt, ## __VA_ARGS__) #define dma_heap_dbg_ioctl(fmt, ...) dma_heap_dbg(DMA_HEAP_IOCTL, fmt, ## __VA_ARGS__) #define dma_heap_dbg_chk(fmt, ...) dma_heap_dbg(DMA_HEAP_CHECK, fmt, ## __VA_ARGS__) typedef struct { RK_U32 alignment; RK_S32 device; RK_U32 flags; } allocator_ctx_dmaheap; typedef struct DmaHeapInfo_t { const char *name; RK_S32 fd; RK_U32 flags; } DmaHeapInfo; static DmaHeapInfo heap_infos[MPP_ALLOC_FLAG_TYPE_NB] = { { "system-uncached", -1, MPP_ALLOC_FLAG_NONE , }, /* 0 */ { "system-uncached-dma32", -1, MPP_ALLOC_FLAG_DMA32, }, /* 1 */ { "system", -1, MPP_ALLOC_FLAG_CACHABLE , }, /* 2 */ { "system-dma32", -1, MPP_ALLOC_FLAG_CACHABLE | MPP_ALLOC_FLAG_DMA32, }, /* 3 */ { "cma-uncached", -1, MPP_ALLOC_FLAG_CMA , }, /* 4 */ { "cma-uncached-dma32", -1, MPP_ALLOC_FLAG_CMA | MPP_ALLOC_FLAG_DMA32, }, /* 5 */ { "cma", -1, MPP_ALLOC_FLAG_CMA | MPP_ALLOC_FLAG_CACHABLE , }, /* 6 */ { "cma-dma32", -1, MPP_ALLOC_FLAG_CMA | MPP_ALLOC_FLAG_CACHABLE | MPP_ALLOC_FLAG_DMA32, }, /* 7 */ }; static int try_open_path(const char *name) { static const char *heap_path = "/dev/dma_heap/"; char buf[64]; int fd; snprintf(buf, sizeof(buf) - 1, "%s%s", heap_path, name); fd = open(buf, O_RDONLY | O_CLOEXEC); // read permission is enough dma_heap_dbg_ops("open dma_heap %-24s -> fd %d\n", name, fd); return fd; } static MPP_RET try_flip_flag(RK_U32 orig, RK_U32 flag) { DmaHeapInfo *dst = &heap_infos[orig]; DmaHeapInfo *src; RK_U32 used; if (orig & flag) used = (RK_U32)(orig & (~flag)); else used = (RK_U32)(orig | flag); src = &heap_infos[used]; if (src->fd > 0) { /* found valid heap use it */ dst->fd = mpp_dup(src->fd); dst->flags = src->flags; dma_heap_dbg_chk("dma-heap type %x %s remap to %x %s\n", orig, dst->name, used, src->name); } return dst->fd > 0 ? MPP_OK : MPP_NOK; } __attribute__ ((constructor)) void dma_heap_init(void) { DmaHeapInfo *info = NULL; RK_U32 all_success = 1; RK_U32 i; mpp_env_get_u32("dma_heap_debug", &dma_heap_debug, 0); /* go through all heap first */ for (i = 0; i < MPP_ARRAY_ELEMS(heap_infos); i++) { info = &heap_infos[i]; if (info->fd > 0) continue; info->fd = try_open_path(info->name); if (info->fd <= 0) all_success = 0; } if (!all_success) { /* check remaining failed heap mapping */ for (i = 0; i < MPP_ARRAY_ELEMS(heap_infos); i++) { info = &heap_infos[i]; if (info->fd > 0) continue; /* if original heap failed then try revert cacheable flag */ if (MPP_OK == try_flip_flag((RK_U32)i, MPP_ALLOC_FLAG_CACHABLE)) continue; /* if cacheable heap failed then try revert dma32 flag */ if (MPP_OK == try_flip_flag((RK_U32)i, MPP_ALLOC_FLAG_DMA32)) continue; /* if dma32 heap failed then try revert both cacheable and dma32 flag */ if (MPP_OK == try_flip_flag((RK_U32)i, MPP_ALLOC_FLAG_CACHABLE | MPP_ALLOC_FLAG_DMA32)) continue; dma_heap_dbg_chk("dma-heap type %x - %s remap failed\n", i, info->name); } } } __attribute__ ((destructor)) void dma_heap_deinit(void) { RK_U32 i; for (i = 0; i < MPP_ARRAY_ELEMS(heap_infos); i++) { DmaHeapInfo *info = &heap_infos[i]; if (info->fd > 0) { close(info->fd); info->fd = -1; } } } static int dma_heap_alloc(int fd, size_t len, RK_S32 *dmabuf_fd, RK_U32 flags) { struct dma_heap_allocation_data data; int ret; memset(&data, 0, sizeof(data)); data.len = len; data.fd_flags = O_RDWR | O_CLOEXEC; data.heap_flags = 0; // heap_flags should be set to 0 ret = ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data); if (ret < 0) { mpp_err("ioctl alloc failed for %s\n", strerror(errno)); return ret; } dma_heap_dbg_ioctl("ioctl alloc get fd %d\n", data.fd); *dmabuf_fd = data.fd; (void) flags; return ret; } static MPP_RET os_allocator_dma_heap_open(void **ctx, size_t alignment, MppAllocFlagType flags) { allocator_ctx_dmaheap *p; DmaHeapInfo *info = NULL; RK_U32 type = 0; mpp_env_get_u32("dma_heap_debug", &dma_heap_debug, dma_heap_debug); if (NULL == ctx) { mpp_err_f("does not accept NULL input\n"); return MPP_ERR_NULL_PTR; } *ctx = NULL; info = &heap_infos[flags]; if (info->fd <= 0) { mpp_err_f("open dma heap type %x %s failed!\n", type, info->name); return MPP_ERR_UNKNOW; } p = mpp_malloc(allocator_ctx_dmaheap, 1); if (NULL == p) { mpp_err_f("failed to allocate context\n"); return MPP_ERR_MALLOC; } else { p->alignment = alignment; p->flags = info->flags; p->device = info->fd; *ctx = p; } dma_heap_dbg_ops("dev %d open heap type %x:%x\n", p->device, flags, info->flags); return MPP_OK; } static MPP_RET os_allocator_dma_heap_alloc(void *ctx, MppBufferInfo *info) { MPP_RET ret = MPP_OK; allocator_ctx_dmaheap *p = NULL; if (NULL == ctx) { mpp_err_f("does not accept NULL input\n"); return MPP_ERR_NULL_PTR; } p = (allocator_ctx_dmaheap *)ctx; ret = dma_heap_alloc(p->device, info->size, (RK_S32 *)&info->fd, p->flags); dma_heap_dbg_ops("dev %d alloc %3d size %d\n", p->device, info->fd, info->size); if (ret) { mpp_err_f("dma_heap_alloc failed ret %d\n", ret); return ret; } info->ptr = NULL; return ret; } static MPP_RET os_allocator_dma_heap_import(void *ctx, MppBufferInfo *data) { allocator_ctx_dmaheap *p = (allocator_ctx_dmaheap *)ctx; RK_S32 fd_ext = data->fd; MPP_RET ret = MPP_OK; mpp_assert(fd_ext > 0); data->fd = mpp_dup(fd_ext); data->ptr = NULL; dma_heap_dbg_ops("dev %d import %3d -> %3d\n", p->device, fd_ext, data->fd); mpp_assert(data->fd > 0); return ret; } static MPP_RET os_allocator_dma_heap_free(void *ctx, MppBufferInfo *data) { allocator_ctx_dmaheap *p = NULL; MPP_RET ret = MPP_OK; if (NULL == ctx) { mpp_err_f("does not accept NULL input\n"); return MPP_ERR_NULL_PTR; } p = (allocator_ctx_dmaheap *)ctx; dma_heap_dbg_ops("dev %d free %3d size %d ptr %p\n", p->device, data->fd, data->size, data->ptr); if (data->ptr) { munmap(data->ptr, data->size); data->ptr = NULL; } close(data->fd); return ret; } static MPP_RET os_allocator_dma_heap_close(void *ctx) { if (NULL == ctx) { mpp_err("os_allocator_close doesn't accept NULL input\n"); return MPP_ERR_NULL_PTR; } MPP_FREE(ctx); return MPP_OK; } static MPP_RET os_allocator_dma_heap_mmap(void *ctx, MppBufferInfo *data) { allocator_ctx_dmaheap *p; MPP_RET ret = MPP_OK; if (NULL == ctx) { mpp_err("os_allocator_close do not accept NULL input\n"); return MPP_ERR_NULL_PTR; } p = (allocator_ctx_dmaheap *)ctx; if (NULL == ctx) return MPP_ERR_NULL_PTR; if (NULL == data->ptr) { int flags = PROT_READ; if (fcntl(data->fd, F_GETFL) & O_RDWR) flags |= PROT_WRITE; data->ptr = mmap(NULL, data->size, flags, MAP_SHARED, data->fd, 0); if (data->ptr == MAP_FAILED) { mpp_err("mmap failed: %s\n", strerror(errno)); data->ptr = NULL; return -errno; } dma_heap_dbg_ops("dev %d mmap %3d ptr %p (%s)\n", p->device, data->fd, data->ptr, flags & PROT_WRITE ? "RDWR" : "RDONLY"); } return ret; } static MppAllocFlagType os_allocator_dma_heap_flags(void *ctx) { allocator_ctx_dmaheap *p = (allocator_ctx_dmaheap *)ctx; return p ? (MppAllocFlagType)p->flags : MPP_ALLOC_FLAG_NONE; } os_allocator allocator_dma_heap = { .type = MPP_BUFFER_TYPE_DMA_HEAP, .open = os_allocator_dma_heap_open, .close = os_allocator_dma_heap_close, .alloc = os_allocator_dma_heap_alloc, .free = os_allocator_dma_heap_free, .import = os_allocator_dma_heap_import, .release = os_allocator_dma_heap_free, .mmap = os_allocator_dma_heap_mmap, .flags = os_allocator_dma_heap_flags, };