Files
gortsplib/pkg/rtcpreceiver/rtcpreceiver.go
2021-01-06 12:26:07 +01:00

163 lines
4.3 KiB
Go

// Package rtcpreceiver implements a utility to generate RTCP receiver reports.
package rtcpreceiver
import (
"math/rand"
"sync"
"time"
"github.com/pion/rtcp"
"github.com/aler9/gortsplib/pkg/base"
)
// RTCPReceiver is a utility to generate RTCP receiver reports.
type RTCPReceiver struct {
receiverSSRC uint32
clockRate float64
mutex sync.Mutex
// data from rtp packets
firstRTPReceived bool
sequenceNumberCycles uint16
lastSequenceNumber uint16
lastRTPTimeRTP uint32
lastRTPTimeTime time.Time
totalLost uint32
totalLostSinceReport uint32
totalSinceReport uint32
jitter float64
// data from rtcp packets
senderSSRC uint32
lastSenderReport uint32
lastSenderReportTime time.Time
}
// New allocates a RTCPReceiver.
func New(receiverSSRC *uint32, clockRate int) *RTCPReceiver {
return &RTCPReceiver{
receiverSSRC: func() uint32 {
if receiverSSRC == nil {
return rand.Uint32()
}
return *receiverSSRC
}(),
clockRate: float64(clockRate),
}
}
// ProcessFrame extracts the needed data from RTP or RTCP frames.
func (rr *RTCPReceiver) ProcessFrame(ts time.Time, streamType base.StreamType, buf []byte) {
rr.mutex.Lock()
defer rr.mutex.Unlock()
if streamType == base.StreamTypeRTP {
// do not parse the entire packet, extract only the fields we need
if len(buf) >= 8 {
sequenceNumber := uint16(buf[2])<<8 | uint16(buf[3])
rtpTime := uint32(buf[4])<<24 | uint32(buf[5])<<16 | uint32(buf[6])<<8 | uint32(buf[7])
// first frame
if !rr.firstRTPReceived {
rr.firstRTPReceived = true
rr.totalSinceReport = 1
rr.lastSequenceNumber = sequenceNumber
rr.lastRTPTimeRTP = rtpTime
rr.lastRTPTimeTime = ts
// subsequent frames
} else {
diff := int32(sequenceNumber) - int32(rr.lastSequenceNumber)
// following frame or following frame after an overflow
if diff > 0 || diff < -0x0FFF {
// overflow
if diff < -0x0FFF {
rr.sequenceNumberCycles++
}
// detect lost frames
if sequenceNumber != (rr.lastSequenceNumber + 1) {
rr.totalLost += uint32(uint16(diff) - 1)
rr.totalLostSinceReport += uint32(uint16(diff) - 1)
// allow up to 24 bits
if rr.totalLost > 0xFFFFFF {
rr.totalLost = 0xFFFFFF
}
if rr.totalLostSinceReport > 0xFFFFFF {
rr.totalLostSinceReport = 0xFFFFFF
}
}
// compute jitter
// https://tools.ietf.org/html/rfc3550#page-39
D := ts.Sub(rr.lastRTPTimeTime).Seconds()*rr.clockRate -
(float64(rtpTime) - float64(rr.lastRTPTimeRTP))
if D < 0 {
D = -D
}
rr.jitter += (D - rr.jitter) / 16
rr.totalSinceReport += uint32(uint16(diff))
rr.lastSequenceNumber = sequenceNumber
rr.lastRTPTimeRTP = rtpTime
rr.lastRTPTimeTime = ts
}
// ignore invalid frames (diff = 0) or reordered frames (diff < 0)
}
}
} else {
// we can afford to unmarshal all RTCP frames
// since they are sent with a frequency much lower than the one of RTP frames
frames, err := rtcp.Unmarshal(buf)
if err == nil {
for _, frame := range frames {
if sr, ok := (frame).(*rtcp.SenderReport); ok {
rr.senderSSRC = sr.SSRC
rr.lastSenderReport = uint32(sr.NTPTime >> 16)
rr.lastSenderReportTime = ts
}
}
}
}
}
// Report generates a RTCP receiver report.
func (rr *RTCPReceiver) Report(ts time.Time) []byte {
rr.mutex.Lock()
defer rr.mutex.Unlock()
report := &rtcp.ReceiverReport{
SSRC: rr.receiverSSRC,
Reports: []rtcp.ReceptionReport{
{
SSRC: rr.senderSSRC,
LastSequenceNumber: uint32(rr.sequenceNumberCycles)<<16 | uint32(rr.lastSequenceNumber),
LastSenderReport: rr.lastSenderReport,
// equivalent to taking the integer part after multiplying the
// loss fraction by 256
FractionLost: uint8(float64(rr.totalLostSinceReport*256) / float64(rr.totalSinceReport)),
TotalLost: rr.totalLost,
// delay, expressed in units of 1/65536 seconds, between
// receiving the last SR packet from source SSRC_n and sending this
// reception report block
Delay: uint32(ts.Sub(rr.lastSenderReportTime).Seconds() * 65536),
Jitter: uint32(rr.jitter),
},
},
}
rr.totalLostSinceReport = 0
rr.totalSinceReport = 0
byts, err := report.Marshal()
if err != nil {
panic(err)
}
return byts
}