Files
gonum/lapack/gonum/dormqr.go
Dan Kortschak 17ea55aedb blas,lapack: clean up docs and comments
Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g

Some additional manual editing of odd formatting.
2019-09-06 20:02:29 +09:30

178 lines
4.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gonum
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dormqr multiplies an m×n matrix C by an orthogonal matrix Q as
// C = Q * C if side == blas.Left and trans == blas.NoTrans,
// C = Qᵀ * C if side == blas.Left and trans == blas.Trans,
// C = C * Q if side == blas.Right and trans == blas.NoTrans,
// C = C * Qᵀ if side == blas.Right and trans == blas.Trans,
// where Q is defined as the product of k elementary reflectors
// Q = H_0 * H_1 * ... * H_{k-1}.
//
// If side == blas.Left, A is an m×k matrix and 0 <= k <= m.
// If side == blas.Right, A is an n×k matrix and 0 <= k <= n.
// The ith column of A contains the vector which defines the elementary
// reflector H_i and tau[i] contains its scalar factor. tau must have length k
// and Dormqr will panic otherwise. Dgeqrf returns A and tau in the required
// form.
//
// work must have length at least max(1,lwork), and lwork must be at least n if
// side == blas.Left and at least m if side == blas.Right, otherwise Dormqr will
// panic.
//
// work is temporary storage, and lwork specifies the usable memory length. At
// minimum, lwork >= m if side == blas.Left and lwork >= n if side ==
// blas.Right, and this function will panic otherwise. Larger values of lwork
// will generally give better performance. On return, work[0] will contain the
// optimal value of lwork.
//
// If lwork is -1, instead of performing Dormqr, the optimal workspace size will
// be stored into work[0].
func (impl Implementation) Dormqr(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
left := side == blas.Left
nq := n
nw := m
if left {
nq = m
nw = n
}
switch {
case !left && side != blas.Right:
panic(badSide)
case trans != blas.NoTrans && trans != blas.Trans:
panic(badTrans)
case m < 0:
panic(mLT0)
case n < 0:
panic(nLT0)
case k < 0:
panic(kLT0)
case left && k > m:
panic(kGTM)
case !left && k > n:
panic(kGTN)
case lda < max(1, k):
panic(badLdA)
case ldc < max(1, n):
panic(badLdC)
case lwork < max(1, nw) && lwork != -1:
panic(badLWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
// Quick return if possible.
if m == 0 || n == 0 || k == 0 {
work[0] = 1
return
}
const (
nbmax = 64
ldt = nbmax
tsize = nbmax * ldt
)
opts := string(side) + string(trans)
nb := min(nbmax, impl.Ilaenv(1, "DORMQR", opts, m, n, k, -1))
lworkopt := max(1, nw)*nb + tsize
if lwork == -1 {
work[0] = float64(lworkopt)
return
}
switch {
case len(a) < (nq-1)*lda+k:
panic(shortA)
case len(tau) != k:
panic(badLenTau)
case len(c) < (m-1)*ldc+n:
panic(shortC)
}
nbmin := 2
if 1 < nb && nb < k {
if lwork < nw*nb+tsize {
nb = (lwork - tsize) / nw
nbmin = max(2, impl.Ilaenv(2, "DORMQR", opts, m, n, k, -1))
}
}
if nb < nbmin || k <= nb {
// Call unblocked code.
impl.Dorm2r(side, trans, m, n, k, a, lda, tau, c, ldc, work)
work[0] = float64(lworkopt)
return
}
var (
ldwork = nb
notrans = trans == blas.NoTrans
)
switch {
case left && notrans:
for i := ((k - 1) / nb) * nb; i >= 0; i -= nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, m-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m-i, n, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i*ldc:], ldc,
work[tsize:], ldwork)
}
case left && !notrans:
for i := 0; i < k; i += nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, m-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m-i, n, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i*ldc:], ldc,
work[tsize:], ldwork)
}
case !left && notrans:
for i := 0; i < k; i += nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, n-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m, n-i, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i:], ldc,
work[tsize:], ldwork)
}
case !left && !notrans:
for i := ((k - 1) / nb) * nb; i >= 0; i -= nb {
ib := min(nb, k-i)
impl.Dlarft(lapack.Forward, lapack.ColumnWise, n-i, ib,
a[i*lda+i:], lda,
tau[i:],
work[:tsize], ldt)
impl.Dlarfb(side, trans, lapack.Forward, lapack.ColumnWise, m, n-i, ib,
a[i*lda+i:], lda,
work[:tsize], ldt,
c[i:], ldc,
work[tsize:], ldwork)
}
}
work[0] = float64(lworkopt)
}