mirror of
https://github.com/gonum/gonum.git
synced 2025-11-03 03:13:27 +08:00
Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g
Some additional manual editing of odd formatting.
102 lines
2.7 KiB
Go
102 lines
2.7 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package gonum
|
||
|
||
import "gonum.org/v1/gonum/blas"
|
||
|
||
// Dorm2r multiplies a general matrix C by an orthogonal matrix from a QR factorization
|
||
// determined by Dgeqrf.
|
||
// C = Q * C if side == blas.Left and trans == blas.NoTrans
|
||
// C = Qᵀ * C if side == blas.Left and trans == blas.Trans
|
||
// C = C * Q if side == blas.Right and trans == blas.NoTrans
|
||
// C = C * Qᵀ if side == blas.Right and trans == blas.Trans
|
||
// If side == blas.Left, a is a matrix of size m×k, and if side == blas.Right
|
||
// a is of size n×k.
|
||
//
|
||
// tau contains the Householder factors and is of length at least k and this function
|
||
// will panic otherwise.
|
||
//
|
||
// work is temporary storage of length at least n if side == blas.Left
|
||
// and at least m if side == blas.Right and this function will panic otherwise.
|
||
//
|
||
// Dorm2r is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorm2r(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
|
||
left := side == blas.Left
|
||
switch {
|
||
case !left && side != blas.Right:
|
||
panic(badSide)
|
||
case trans != blas.Trans && trans != blas.NoTrans:
|
||
panic(badTrans)
|
||
case m < 0:
|
||
panic(mLT0)
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case k < 0:
|
||
panic(kLT0)
|
||
case left && k > m:
|
||
panic(kGTM)
|
||
case !left && k > n:
|
||
panic(kGTN)
|
||
case lda < max(1, k):
|
||
panic(badLdA)
|
||
case ldc < max(1, n):
|
||
panic(badLdC)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if m == 0 || n == 0 || k == 0 {
|
||
return
|
||
}
|
||
|
||
switch {
|
||
case left && len(a) < (m-1)*lda+k:
|
||
panic(shortA)
|
||
case !left && len(a) < (n-1)*lda+k:
|
||
panic(shortA)
|
||
case len(c) < (m-1)*ldc+n:
|
||
panic(shortC)
|
||
case len(tau) < k:
|
||
panic(shortTau)
|
||
case left && len(work) < n:
|
||
panic(shortWork)
|
||
case !left && len(work) < m:
|
||
panic(shortWork)
|
||
}
|
||
|
||
if left {
|
||
if trans == blas.NoTrans {
|
||
for i := k - 1; i >= 0; i-- {
|
||
aii := a[i*lda+i]
|
||
a[i*lda+i] = 1
|
||
impl.Dlarf(side, m-i, n, a[i*lda+i:], lda, tau[i], c[i*ldc:], ldc, work)
|
||
a[i*lda+i] = aii
|
||
}
|
||
return
|
||
}
|
||
for i := 0; i < k; i++ {
|
||
aii := a[i*lda+i]
|
||
a[i*lda+i] = 1
|
||
impl.Dlarf(side, m-i, n, a[i*lda+i:], lda, tau[i], c[i*ldc:], ldc, work)
|
||
a[i*lda+i] = aii
|
||
}
|
||
return
|
||
}
|
||
if trans == blas.NoTrans {
|
||
for i := 0; i < k; i++ {
|
||
aii := a[i*lda+i]
|
||
a[i*lda+i] = 1
|
||
impl.Dlarf(side, m, n-i, a[i*lda+i:], lda, tau[i], c[i:], ldc, work)
|
||
a[i*lda+i] = aii
|
||
}
|
||
return
|
||
}
|
||
for i := k - 1; i >= 0; i-- {
|
||
aii := a[i*lda+i]
|
||
a[i*lda+i] = 1
|
||
impl.Dlarf(side, m, n-i, a[i*lda+i:], lda, tau[i], c[i:], ldc, work)
|
||
a[i*lda+i] = aii
|
||
}
|
||
}
|