Files
gonum/mat/dense_example_test.go
Jeremy Atkinson fa851461dd mat: added a few godoc examples for Dense methods (#263)
* added a few godoc examples for Dense methods
2017-10-24 09:22:15 -06:00

131 lines
3.3 KiB
Go

// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat_test
import (
"fmt"
"gonum.org/v1/gonum/mat"
)
func ExampleDense_Add() {
// Initialize two matrices, a and b.
a := mat.NewDense(2, 2, []float64{1, 0, 1, 0})
b := mat.NewDense(2, 2, []float64{0, 1, 0, 1})
// Add a and b, placing the result into c.
// ...Notice that the size is automatically adjusted when the receiver has zero size.
var c mat.Dense
c.Add(a, b)
// Print the result using the formatter.
fc := mat.Formatted(&c, mat.Prefix(" "), mat.Squeeze())
fmt.Printf("Result:\nc = %v\n\n", fc)
// Output:
// Result:
// c = ⎡1 1⎤
// ⎣1 1⎦
//
}
func ExampleDense_Sub() {
// Initialize two matrices, a and b.
a := mat.NewDense(2, 2, []float64{1, 1, 1, 1})
b := mat.NewDense(2, 2, []float64{1, 0, 0, 1})
// Subtract b from a, placing the result into a.
a.Sub(a, b)
// Print the result using the formatter.
fa := mat.Formatted(a, mat.Prefix(" "), mat.Squeeze())
fmt.Printf("Result:\na = %v\n\n", fa)
// Output:
// Result:
// a = ⎡0 1⎤
// ⎣1 0⎦
//
}
func ExampleDense_MulElem() {
// Initialize two matrices, a and b.
a := mat.NewDense(2, 2, []float64{1, 2, 3, 4})
b := mat.NewDense(2, 2, []float64{1, 2, 3, 4})
// Multiply the elements of a and b, placing the result into a.
a.MulElem(a, b)
// Print the result using the formatter.
fa := mat.Formatted(a, mat.Prefix(" "), mat.Squeeze())
fmt.Printf("Result:\na = %v\n\n", fa)
// Output:
// Result:
// a = ⎡1 4⎤
// ⎣9 16⎦
//
}
func ExampleDense_DivElem() {
// Initialize two matrices, a and b.
a := mat.NewDense(2, 2, []float64{5, 10, 15, 20})
b := mat.NewDense(2, 2, []float64{5, 5, 5, 5})
// Divide the elements of a by b, placing the result into a.
a.DivElem(a, b)
// Print the result using the formatter.
fa := mat.Formatted(a, mat.Prefix(" "), mat.Squeeze())
fmt.Printf("Result:\na = %v\n\n", fa)
// Output:
// Result:
// a = ⎡1 2⎤
// ⎣3 4⎦
//
}
func ExampleDense_Inverse() {
// Initialize two matrices, a and ia.
a := mat.NewDense(2, 2, []float64{4, 0, 0, 4})
var ia mat.Dense
// Take the inverse of a and place the result in ia.
ia.Inverse(a)
// Print the result using the formatter.
fa := mat.Formatted(&ia, mat.Prefix(" "), mat.Squeeze())
fmt.Printf("Result:\nia = %.2g\n\n", fa)
// Confirm that A * A^-1 = I
var r mat.Dense
r.Mul(a, &ia)
fr := mat.Formatted(&r, mat.Prefix(" "), mat.Squeeze())
fmt.Printf("Result:\nr = %v\n\n", fr)
// The Inverse operation, however, is numerically unstable, and should typically be avoided.
// For example, a common need is to find x = A^-1 * b. In this case, the SolveVec method of VecDense
// (if b is a Vector) or Solve method of Dense (if b is a matrix) should used instead of computing
// the Inverse of A.
b := mat.NewDense(2, 2, []float64{2, 0, 0, 2})
var x mat.Dense
x.Solve(a, b)
// Print the result using the formatter.
fx := mat.Formatted(&x, mat.Prefix(" "), mat.Squeeze())
fmt.Printf("Result:\nx = %v\n\n", fx)
// Output:
// Result:
// ia = ⎡0.25 -0⎤
// ⎣ 0 0.25⎦
//
// Result:
// r = ⎡1 0⎤
// ⎣0 1⎦
//
// Result:
// x = ⎡0.5 0⎤
// ⎣ 0 0.5⎦
//
}