Files
gonum/covariancematrix_test.go
Jonathan J Lawlor f757c287d4 change benchmark constant names to lowercase
Changed SMALL, MEDIUM, LARGE, and HUGE to small, medum, large, and
huge, respectively.
2014-12-21 19:07:01 -05:00

198 lines
4.2 KiB
Go

// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"math/rand"
"testing"
"github.com/gonum/blas/goblas"
"github.com/gonum/floats"
"github.com/gonum/matrix/mat64"
)
func init() {
mat64.Register(goblas.Blas{})
}
func TestCovarianceMatrix(t *testing.T) {
for i, test := range []struct {
mat mat64.Matrix
weights mat64.Vec
r, c int
x []float64
}{
{
mat: mat64.NewDense(5, 2, []float64{
-2, -4,
-1, 2,
0, 0,
1, -2,
2, 4,
}),
weights: nil,
r: 2,
c: 2,
x: []float64{
2.5, 3,
3, 10,
},
}, {
mat: mat64.NewDense(5, 2, []float64{
-2, -4,
-1, 2,
0, 0,
1, -2,
2, 4,
}),
weights: []float64{
1.5,
.5,
1.5,
.5,
1,
},
r: 2,
c: 2,
x: []float64{
2.75, 4.5,
4.5, 11,
},
}, {
mat: mat64.NewDense(5, 2, []float64{
-2, -4,
-1, 2,
0, 0,
1, -2,
2, 4,
}),
weights: mat64.Vec([]float64{
1.5,
.5,
1.5,
.5,
1,
}),
r: 2,
c: 2,
x: []float64{
2.75, 4.5,
4.5, 11,
},
},
} {
c := CovarianceMatrix(nil, test.mat, test.weights).RawMatrix()
if c.Rows != test.r {
t.Errorf("%d: expected rows %d, found %d", i, test.r, c.Rows)
}
if c.Cols != test.c {
t.Errorf("%d: expected cols %d, found %d", i, test.c, c.Cols)
}
if !floats.Equal(test.x, c.Data) {
t.Errorf("%d: expected data %#q, found %#q", i, test.x, c.Data)
}
}
if !Panics(func() { CovarianceMatrix(nil, mat64.NewDense(5, 2, nil), mat64.Vec([]float64{})) }) {
t.Errorf("CovarianceMatrix did not panic with weight size mismatch")
}
if !Panics(func() { CovarianceMatrix(mat64.NewDense(1, 1, nil), mat64.NewDense(5, 2, nil), nil) }) {
t.Errorf("CovarianceMatrix did not panic with preallocation size mismatch")
}
}
// benchmarks
func randMat(r, c int) mat64.Matrix {
x := make([]float64, r*c)
for i := range x {
x[i] = rand.Float64()
}
return mat64.NewDense(r, c, x)
}
func benchmarkCovarianceMatrix(b *testing.B, m mat64.Matrix) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
CovarianceMatrix(nil, m, nil)
}
}
func benchmarkCovarianceMatrixInPlace(b *testing.B, m mat64.Matrix) {
_, c := m.Dims()
res := mat64.NewDense(c, c, nil)
b.ResetTimer()
for i := 0; i < b.N; i++ {
CovarianceMatrix(res, m, nil)
}
}
func BenchmarkCovarianceMatrixSmallxSmall(b *testing.B) {
// 10 * 10 elements
x := randMat(small, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixSmallxMedium(b *testing.B) {
// 10 * 1000 elements
x := randMat(small, medium)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixMediumxSmall(b *testing.B) {
// 1000 * 10 elements
x := randMat(medium, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixMediumxMedium(b *testing.B) {
// 1000 * 1000 elements
x := randMat(medium, medium)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixLargexSmall(b *testing.B) {
// 1e5 * 10 elements
x := randMat(large, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixHugexSmall(b *testing.B) {
// 1e7 * 10 elements
x := randMat(huge, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixSmallxSmallInPlace(b *testing.B) {
// 10 * 10 elements
x := randMat(small, small)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixSmallxMediumInPlace(b *testing.B) {
// 10 * 1000 elements
x := randMat(small, medium)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixMediumxSmallInPlace(b *testing.B) {
// 1000 * 10 elements
x := randMat(medium, small)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixMediumxMediumInPlace(b *testing.B) {
// 1000 * 1000 elements
x := randMat(medium, medium)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixLargexSmallInPlace(b *testing.B) {
// 1e5 * 10 elements
x := randMat(large, small)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixHugexSmallInPlace(b *testing.B) {
// 1e7 * 10 elements
x := randMat(huge, small)
benchmarkCovarianceMatrixInPlace(b, x)
}