mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-25 08:10:28 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			194 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			5.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package fd
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| 	"sync"
 | |
| 
 | |
| 	"gonum.org/v1/gonum/mat"
 | |
| )
 | |
| 
 | |
| // Hessian approximates the Hessian matrix of the multivariate function f
 | |
| // at the location x. That is
 | |
| //  H_{i,j} = ∂^2 f(x)/∂x_i ∂x_j
 | |
| // If dst is not nil, the resulting H will be stored in-place into dst
 | |
| // and returned, otherwise a new matrix will be allocated first. Finite difference
 | |
| // formula and other options are specified by settings. If settings is nil,
 | |
| // the Hessian will be estimated using the Forward formula and a default step size.
 | |
| //
 | |
| // Hessian panics if the size of dst and x is not equal, or if the derivative
 | |
| // order of the formula is not 1.
 | |
| func Hessian(dst *mat.SymDense, f func(x []float64) float64, x []float64, settings *Settings) *mat.SymDense {
 | |
| 	n := len(x)
 | |
| 	if dst == nil {
 | |
| 		dst = mat.NewSymDense(n, nil)
 | |
| 	} else {
 | |
| 		if n2 := dst.Symmetric(); n2 != n {
 | |
| 			panic("hessian: dst size mismatch")
 | |
| 		}
 | |
| 		for i := 0; i < n; i++ {
 | |
| 			for j := i; j < n; j++ {
 | |
| 				dst.SetSym(i, j, 0)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Default settings.
 | |
| 	formula := Forward
 | |
| 	step := math.Sqrt(formula.Step) // Use the sqrt because taking derivatives of derivatives.
 | |
| 	var originValue float64
 | |
| 	var originKnown, concurrent bool
 | |
| 
 | |
| 	// Use user settings if provided.
 | |
| 	if settings != nil {
 | |
| 		if !settings.Formula.isZero() {
 | |
| 			formula = settings.Formula
 | |
| 			step = math.Sqrt(formula.Step)
 | |
| 			checkFormula(formula)
 | |
| 			if formula.Derivative != 1 {
 | |
| 				panic(badDerivOrder)
 | |
| 			}
 | |
| 		}
 | |
| 		if settings.Step != 0 {
 | |
| 			if settings.Step < 0 {
 | |
| 				panic(negativeStep)
 | |
| 			}
 | |
| 			step = settings.Step
 | |
| 		}
 | |
| 		originKnown = settings.OriginKnown
 | |
| 		originValue = settings.OriginValue
 | |
| 		concurrent = settings.Concurrent
 | |
| 	}
 | |
| 
 | |
| 	evals := n * (n + 1) / 2 * len(formula.Stencil) * len(formula.Stencil)
 | |
| 	for _, pt := range formula.Stencil {
 | |
| 		if pt.Loc == 0 {
 | |
| 			evals -= n * (n + 1) / 2
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nWorkers := computeWorkers(concurrent, evals)
 | |
| 	if nWorkers == 1 {
 | |
| 		hessianSerial(dst, f, x, formula.Stencil, step, originKnown, originValue)
 | |
| 		return dst
 | |
| 	}
 | |
| 	hessianConcurrent(dst, nWorkers, evals, f, x, formula.Stencil, step, originKnown, originValue)
 | |
| 	return dst
 | |
| }
 | |
| 
 | |
| func hessianSerial(dst *mat.SymDense, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
 | |
| 	n := len(x)
 | |
| 	xCopy := make([]float64, n)
 | |
| 	fo := func() float64 {
 | |
| 		// Copy x in case it is modified during the call.
 | |
| 		copy(xCopy, x)
 | |
| 		return f(x)
 | |
| 	}
 | |
| 	is2 := 1 / (step * step)
 | |
| 	origin := getOrigin(originKnown, originValue, fo, stencil)
 | |
| 	for i := 0; i < n; i++ {
 | |
| 		for j := i; j < n; j++ {
 | |
| 			var hess float64
 | |
| 			for _, pti := range stencil {
 | |
| 				for _, ptj := range stencil {
 | |
| 					var v float64
 | |
| 					if pti.Loc == 0 && ptj.Loc == 0 {
 | |
| 						v = origin
 | |
| 					} else {
 | |
| 						// Copying the data anew has two benefits. First, it
 | |
| 						// avoids floating point issues where adding and then
 | |
| 						// subtracting the step don't return to the exact same
 | |
| 						// location. Secondly, it protects against the function
 | |
| 						// modifying the input data.
 | |
| 						copy(xCopy, x)
 | |
| 						xCopy[i] += pti.Loc * step
 | |
| 						xCopy[j] += ptj.Loc * step
 | |
| 						v = f(xCopy)
 | |
| 					}
 | |
| 					hess += v * pti.Coeff * ptj.Coeff * is2
 | |
| 				}
 | |
| 			}
 | |
| 			dst.SetSym(i, j, hess)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func hessianConcurrent(dst *mat.SymDense, nWorkers, evals int, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
 | |
| 	n := dst.Symmetric()
 | |
| 	type run struct {
 | |
| 		i, j       int
 | |
| 		iIdx, jIdx int
 | |
| 		result     float64
 | |
| 	}
 | |
| 
 | |
| 	send := make(chan run, evals)
 | |
| 	ans := make(chan run, evals)
 | |
| 
 | |
| 	var originWG sync.WaitGroup
 | |
| 	hasOrigin := usesOrigin(stencil)
 | |
| 	if hasOrigin {
 | |
| 		originWG.Add(1)
 | |
| 		// Launch worker to compute the origin.
 | |
| 		go func() {
 | |
| 			defer originWG.Done()
 | |
| 			xCopy := make([]float64, len(x))
 | |
| 			copy(xCopy, x)
 | |
| 			originValue = f(xCopy)
 | |
| 		}()
 | |
| 	}
 | |
| 
 | |
| 	var workerWG sync.WaitGroup
 | |
| 	// Launch workers.
 | |
| 	for i := 0; i < nWorkers; i++ {
 | |
| 		workerWG.Add(1)
 | |
| 		go func(send <-chan run, ans chan<- run) {
 | |
| 			defer workerWG.Done()
 | |
| 			xCopy := make([]float64, len(x))
 | |
| 			for r := range send {
 | |
| 				if stencil[r.iIdx].Loc == 0 && stencil[r.jIdx].Loc == 0 {
 | |
| 					originWG.Wait()
 | |
| 					r.result = originValue
 | |
| 				} else {
 | |
| 					// See hessianSerial for comment on the copy.
 | |
| 					copy(xCopy, x)
 | |
| 					xCopy[r.i] += stencil[r.iIdx].Loc * step
 | |
| 					xCopy[r.j] += stencil[r.jIdx].Loc * step
 | |
| 					r.result = f(xCopy)
 | |
| 				}
 | |
| 				ans <- r
 | |
| 			}
 | |
| 		}(send, ans)
 | |
| 	}
 | |
| 
 | |
| 	// Launch the distributor, which sends all of runs.
 | |
| 	go func(send chan<- run) {
 | |
| 		for i := 0; i < n; i++ {
 | |
| 			for j := i; j < n; j++ {
 | |
| 				for iIdx := range stencil {
 | |
| 					for jIdx := range stencil {
 | |
| 						send <- run{
 | |
| 							i: i, j: j, iIdx: iIdx, jIdx: jIdx,
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		close(send)
 | |
| 		// Wait for all the workers to quit, then close the ans channel.
 | |
| 		workerWG.Wait()
 | |
| 		close(ans)
 | |
| 	}(send)
 | |
| 
 | |
| 	is2 := 1 / (step * step)
 | |
| 	// Read in the results.
 | |
| 	for r := range ans {
 | |
| 		v := r.result * stencil[r.iIdx].Coeff * stencil[r.jIdx].Coeff * is2
 | |
| 		v += dst.At(r.i, r.j)
 | |
| 		dst.SetSym(r.i, r.j, v)
 | |
| 	}
 | |
| }
 | 
