mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00

* diff/fd: implement Hessian finite difference, and code cleanups. This commit primarily adds the Hessian function for finding a finite difference approximation to the Hessian. At the same time, it combines duplicated functionality across the difference routines so that the preludes to all the difference routines look similar
201 lines
4.7 KiB
Go
201 lines
4.7 KiB
Go
// Copyright ©2016 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package fd
|
||
|
||
import (
|
||
"sync"
|
||
|
||
"gonum.org/v1/gonum/floats"
|
||
"gonum.org/v1/gonum/mat"
|
||
)
|
||
|
||
type JacobianSettings struct {
|
||
Formula Formula
|
||
OriginValue []float64
|
||
Step float64
|
||
Concurrent bool
|
||
}
|
||
|
||
// Jacobian approximates the Jacobian matrix of a vector-valued function f at
|
||
// the location x and stores the result in-place into dst.
|
||
//
|
||
// Finite difference formula and other options are specified by settings. If
|
||
// settings is nil, the Jacobian will be estimated using the Forward formula and
|
||
// a default step size.
|
||
//
|
||
// The Jacobian matrix J is the matrix of all first-order partial derivatives of f.
|
||
// If f maps an n-dimensional vector x to an m-dimensional vector y = f(x), J is
|
||
// an m×n matrix whose elements are given as
|
||
// J_{i,j} = ∂f_i/∂x_j,
|
||
// or expanded out
|
||
// [ ∂f_1/∂x_1 ... ∂f_1/∂x_n ]
|
||
// [ . . . ]
|
||
// J = [ . . . ]
|
||
// [ . . . ]
|
||
// [ ∂f_m/∂x_1 ... ∂f_m/∂x_n ]
|
||
//
|
||
// dst must be non-nil, the number of its columns must equal the length of x, and
|
||
// the derivative order of the formula must be 1, otherwise Jacobian will panic.
|
||
func Jacobian(dst *mat.Dense, f func(y, x []float64), x []float64, settings *JacobianSettings) {
|
||
n := len(x)
|
||
if n == 0 {
|
||
panic("jacobian: x has zero length")
|
||
}
|
||
m, c := dst.Dims()
|
||
if c != n {
|
||
panic("jacobian: mismatched matrix size")
|
||
}
|
||
|
||
// Default settings.
|
||
formula := Forward
|
||
step := formula.Step
|
||
var originValue []float64
|
||
var concurrent bool
|
||
|
||
// Use user settings if provided.
|
||
if settings != nil {
|
||
if !settings.Formula.isZero() {
|
||
formula = settings.Formula
|
||
step = formula.Step
|
||
checkFormula(formula)
|
||
if formula.Derivative != 1 {
|
||
panic(badDerivOrder)
|
||
}
|
||
}
|
||
if settings.Step != 0 {
|
||
step = settings.Step
|
||
}
|
||
originValue = settings.OriginValue
|
||
if originValue != nil && len(originValue) != m {
|
||
panic("jacobian: mismatched OriginValue slice length")
|
||
}
|
||
concurrent = settings.Concurrent
|
||
}
|
||
|
||
evals := n * len(formula.Stencil)
|
||
for _, pt := range formula.Stencil {
|
||
if pt.Loc == 0 {
|
||
evals -= n - 1
|
||
break
|
||
}
|
||
}
|
||
|
||
nWorkers := computeWorkers(concurrent, evals)
|
||
if nWorkers == 1 {
|
||
jacobianSerial(dst, f, x, originValue, formula, step)
|
||
return
|
||
}
|
||
jacobianConcurrent(dst, f, x, originValue, formula, step, nWorkers)
|
||
}
|
||
|
||
func jacobianSerial(dst *mat.Dense, f func([]float64, []float64), x, origin []float64, formula Formula, step float64) {
|
||
m, n := dst.Dims()
|
||
xcopy := make([]float64, n)
|
||
y := make([]float64, m)
|
||
col := make([]float64, m)
|
||
for j := 0; j < n; j++ {
|
||
for i := range col {
|
||
col[i] = 0
|
||
}
|
||
for _, pt := range formula.Stencil {
|
||
if pt.Loc == 0 {
|
||
if origin == nil {
|
||
origin = make([]float64, m)
|
||
copy(xcopy, x)
|
||
f(origin, xcopy)
|
||
}
|
||
floats.AddScaled(col, pt.Coeff, origin)
|
||
} else {
|
||
copy(xcopy, x)
|
||
xcopy[j] += pt.Loc * step
|
||
f(y, xcopy)
|
||
floats.AddScaled(col, pt.Coeff, y)
|
||
}
|
||
}
|
||
dst.SetCol(j, col)
|
||
}
|
||
dst.Scale(1/step, dst)
|
||
}
|
||
|
||
func jacobianConcurrent(dst *mat.Dense, f func([]float64, []float64), x, origin []float64, formula Formula, step float64, nWorkers int) {
|
||
m, n := dst.Dims()
|
||
for i := 0; i < m; i++ {
|
||
for j := 0; j < n; j++ {
|
||
dst.Set(i, j, 0)
|
||
}
|
||
}
|
||
|
||
var (
|
||
wg sync.WaitGroup
|
||
mu = make([]sync.Mutex, n) // Guard access to individual columns.
|
||
)
|
||
worker := func(jobs <-chan jacJob) {
|
||
defer wg.Done()
|
||
xcopy := make([]float64, n)
|
||
y := make([]float64, m)
|
||
yVec := mat.NewVector(m, y)
|
||
for job := range jobs {
|
||
copy(xcopy, x)
|
||
xcopy[job.j] += job.pt.Loc * step
|
||
f(y, xcopy)
|
||
col := dst.ColView(job.j)
|
||
mu[job.j].Lock()
|
||
col.AddScaledVec(col, job.pt.Coeff, yVec)
|
||
mu[job.j].Unlock()
|
||
}
|
||
}
|
||
jobs := make(chan jacJob, nWorkers)
|
||
for i := 0; i < nWorkers; i++ {
|
||
wg.Add(1)
|
||
go worker(jobs)
|
||
}
|
||
var hasOrigin bool
|
||
for _, pt := range formula.Stencil {
|
||
if pt.Loc == 0 {
|
||
hasOrigin = true
|
||
continue
|
||
}
|
||
for j := 0; j < n; j++ {
|
||
jobs <- jacJob{j, pt}
|
||
}
|
||
}
|
||
close(jobs)
|
||
if hasOrigin && origin == nil {
|
||
wg.Add(1)
|
||
go func() {
|
||
defer wg.Done()
|
||
origin = make([]float64, m)
|
||
xcopy := make([]float64, n)
|
||
copy(xcopy, x)
|
||
f(origin, xcopy)
|
||
}()
|
||
}
|
||
wg.Wait()
|
||
|
||
if hasOrigin {
|
||
// The formula evaluated at x, we need to add scaled origin to
|
||
// all columns of dst. Iterate again over all Formula points
|
||
// because we don't forbid repeated locations.
|
||
|
||
originVec := mat.NewVector(m, origin)
|
||
for _, pt := range formula.Stencil {
|
||
if pt.Loc != 0 {
|
||
continue
|
||
}
|
||
for j := 0; j < n; j++ {
|
||
col := dst.ColView(j)
|
||
col.AddScaledVec(col, pt.Coeff, originVec)
|
||
}
|
||
}
|
||
}
|
||
|
||
dst.Scale(1/step, dst)
|
||
}
|
||
|
||
type jacJob struct {
|
||
j int
|
||
pt Point
|
||
}
|