mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 18:42:45 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			458 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The Gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package blas32
 | ||
| 
 | ||
| import (
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/gonum"
 | ||
| )
 | ||
| 
 | ||
| var blas32 blas.Float32 = gonum.Implementation{}
 | ||
| 
 | ||
| // Use sets the BLAS float32 implementation to be used by subsequent BLAS calls.
 | ||
| // The default implementation is native.Implementation.
 | ||
| func Use(b blas.Float32) {
 | ||
| 	blas32 = b
 | ||
| }
 | ||
| 
 | ||
| // Implementation returns the current BLAS float32 implementation.
 | ||
| //
 | ||
| // Implementation allows direct calls to the current the BLAS float32 implementation
 | ||
| // giving finer control of parameters.
 | ||
| func Implementation() blas.Float32 {
 | ||
| 	return blas32
 | ||
| }
 | ||
| 
 | ||
| // Vector represents a vector with an associated element increment.
 | ||
| type Vector struct {
 | ||
| 	Inc  int
 | ||
| 	Data []float32
 | ||
| }
 | ||
| 
 | ||
| // General represents a matrix using the conventional storage scheme.
 | ||
| type General struct {
 | ||
| 	Rows, Cols int
 | ||
| 	Stride     int
 | ||
| 	Data       []float32
 | ||
| }
 | ||
| 
 | ||
| // Band represents a band matrix using the band storage scheme.
 | ||
| type Band struct {
 | ||
| 	Rows, Cols int
 | ||
| 	KL, KU     int
 | ||
| 	Stride     int
 | ||
| 	Data       []float32
 | ||
| }
 | ||
| 
 | ||
| // Triangular represents a triangular matrix using the conventional storage scheme.
 | ||
| type Triangular struct {
 | ||
| 	N      int
 | ||
| 	Stride int
 | ||
| 	Data   []float32
 | ||
| 	Uplo   blas.Uplo
 | ||
| 	Diag   blas.Diag
 | ||
| }
 | ||
| 
 | ||
| // TriangularBand represents a triangular matrix using the band storage scheme.
 | ||
| type TriangularBand struct {
 | ||
| 	N, K   int
 | ||
| 	Stride int
 | ||
| 	Data   []float32
 | ||
| 	Uplo   blas.Uplo
 | ||
| 	Diag   blas.Diag
 | ||
| }
 | ||
| 
 | ||
| // TriangularPacked represents a triangular matrix using the packed storage scheme.
 | ||
| type TriangularPacked struct {
 | ||
| 	N    int
 | ||
| 	Data []float32
 | ||
| 	Uplo blas.Uplo
 | ||
| 	Diag blas.Diag
 | ||
| }
 | ||
| 
 | ||
| // Symmetric represents a symmetric matrix using the conventional storage scheme.
 | ||
| type Symmetric struct {
 | ||
| 	N      int
 | ||
| 	Stride int
 | ||
| 	Data   []float32
 | ||
| 	Uplo   blas.Uplo
 | ||
| }
 | ||
| 
 | ||
| // SymmetricBand represents a symmetric matrix using the band storage scheme.
 | ||
| type SymmetricBand struct {
 | ||
| 	N, K   int
 | ||
| 	Stride int
 | ||
| 	Data   []float32
 | ||
| 	Uplo   blas.Uplo
 | ||
| }
 | ||
| 
 | ||
| // SymmetricPacked represents a symmetric matrix using the packed storage scheme.
 | ||
| type SymmetricPacked struct {
 | ||
| 	N    int
 | ||
| 	Data []float32
 | ||
| 	Uplo blas.Uplo
 | ||
| }
 | ||
| 
 | ||
| // Level 1
 | ||
| 
 | ||
| const negInc = "blas32: negative vector increment"
 | ||
| 
 | ||
| // Dot computes the dot product of the two vectors:
 | ||
| //  \sum_i x[i]*y[i].
 | ||
| func Dot(n int, x, y Vector) float32 {
 | ||
| 	return blas32.Sdot(n, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // DDot computes the dot product of the two vectors:
 | ||
| //  \sum_i x[i]*y[i].
 | ||
| func DDot(n int, x, y Vector) float64 {
 | ||
| 	return blas32.Dsdot(n, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // SDDot computes the dot product of the two vectors adding a constant:
 | ||
| //  alpha + \sum_i x[i]*y[i].
 | ||
| func SDDot(n int, alpha float32, x, y Vector) float32 {
 | ||
| 	return blas32.Sdsdot(n, alpha, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Nrm2 computes the Euclidean norm of the vector x:
 | ||
| //  sqrt(\sum_i x[i]*x[i]).
 | ||
| //
 | ||
| // Nrm2 will panic if the vector increment is negative.
 | ||
| func Nrm2(n int, x Vector) float32 {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	return blas32.Snrm2(n, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Asum computes the sum of the absolute values of the elements of x:
 | ||
| //  \sum_i |x[i]|.
 | ||
| //
 | ||
| // Asum will panic if the vector increment is negative.
 | ||
| func Asum(n int, x Vector) float32 {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	return blas32.Sasum(n, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Iamax returns the index of an element of x with the largest absolute value.
 | ||
| // If there are multiple such indices the earliest is returned.
 | ||
| // Iamax returns -1 if n == 0.
 | ||
| //
 | ||
| // Iamax will panic if the vector increment is negative.
 | ||
| func Iamax(n int, x Vector) int {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	return blas32.Isamax(n, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Swap exchanges the elements of the two vectors:
 | ||
| //  x[i], y[i] = y[i], x[i] for all i.
 | ||
| func Swap(n int, x, y Vector) {
 | ||
| 	blas32.Sswap(n, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Copy copies the elements of x into the elements of y:
 | ||
| //  y[i] = x[i] for all i.
 | ||
| func Copy(n int, x, y Vector) {
 | ||
| 	blas32.Scopy(n, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Axpy adds x scaled by alpha to y:
 | ||
| //  y[i] += alpha*x[i] for all i.
 | ||
| func Axpy(n int, alpha float32, x, y Vector) {
 | ||
| 	blas32.Saxpy(n, alpha, x.Data, x.Inc, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Rotg computes the parameters of a Givens plane rotation so that
 | ||
| //  ⎡ c s⎤   ⎡a⎤   ⎡r⎤
 | ||
| //  ⎣-s c⎦ * ⎣b⎦ = ⎣0⎦
 | ||
| // where a and b are the Cartesian coordinates of a given point.
 | ||
| // c, s, and r are defined as
 | ||
| //  r = ±Sqrt(a^2 + b^2),
 | ||
| //  c = a/r, the cosine of the rotation angle,
 | ||
| //  s = a/r, the sine of the rotation angle,
 | ||
| // and z is defined such that
 | ||
| //  if |a| > |b|,        z = s,
 | ||
| //  otherwise if c != 0, z = 1/c,
 | ||
| //  otherwise            z = 1.
 | ||
| func Rotg(a, b float32) (c, s, r, z float32) {
 | ||
| 	return blas32.Srotg(a, b)
 | ||
| }
 | ||
| 
 | ||
| // Rotmg computes the modified Givens rotation. See
 | ||
| // http://www.netlib.org/lapack/explore-html/df/deb/drotmg_8f.html
 | ||
| // for more details.
 | ||
| func Rotmg(d1, d2, b1, b2 float32) (p blas.SrotmParams, rd1, rd2, rb1 float32) {
 | ||
| 	return blas32.Srotmg(d1, d2, b1, b2)
 | ||
| }
 | ||
| 
 | ||
| // Rot applies a plane transformation to n points represented by the vectors x
 | ||
| // and y:
 | ||
| //  x[i] =  c*x[i] + s*y[i],
 | ||
| //  y[i] = -s*x[i] + c*y[i], for all i.
 | ||
| func Rot(n int, x, y Vector, c, s float32) {
 | ||
| 	blas32.Srot(n, x.Data, x.Inc, y.Data, y.Inc, c, s)
 | ||
| }
 | ||
| 
 | ||
| // Rotm applies the modified Givens rotation to n points represented by the
 | ||
| // vectors x and y.
 | ||
| func Rotm(n int, x, y Vector, p blas.SrotmParams) {
 | ||
| 	blas32.Srotm(n, x.Data, x.Inc, y.Data, y.Inc, p)
 | ||
| }
 | ||
| 
 | ||
| // Scal scales the vector x by alpha:
 | ||
| //  x[i] *= alpha for all i.
 | ||
| //
 | ||
| // Scal will panic if the vector increment is negative.
 | ||
| func Scal(n int, alpha float32, x Vector) {
 | ||
| 	if x.Inc < 0 {
 | ||
| 		panic(negInc)
 | ||
| 	}
 | ||
| 	blas32.Sscal(n, alpha, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Level 2
 | ||
| 
 | ||
| // Gemv computes
 | ||
| //  y = alpha * A * x + beta * y,   if t == blas.NoTrans,
 | ||
| //  y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
 | ||
| func Gemv(t blas.Transpose, alpha float32, a General, x Vector, beta float32, y Vector) {
 | ||
| 	blas32.Sgemv(t, a.Rows, a.Cols, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Gbmv computes
 | ||
| //  y = alpha * A * x + beta * y,   if t == blas.NoTrans,
 | ||
| //  y = alpha * A^T * x + beta * y, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an m×n band matrix, x and y are vectors, and alpha and beta are scalars.
 | ||
| func Gbmv(t blas.Transpose, alpha float32, a Band, x Vector, beta float32, y Vector) {
 | ||
| 	blas32.Sgbmv(t, a.Rows, a.Cols, a.KL, a.KU, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Trmv computes
 | ||
| //  x = A * x,   if t == blas.NoTrans,
 | ||
| //  x = A^T * x, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an n×n triangular matrix, and x is a vector.
 | ||
| func Trmv(t blas.Transpose, a Triangular, x Vector) {
 | ||
| 	blas32.Strmv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tbmv computes
 | ||
| //  x = A * x,   if t == blas.NoTrans,
 | ||
| //  x = A^T * x, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an n×n triangular band matrix, and x is a vector.
 | ||
| func Tbmv(t blas.Transpose, a TriangularBand, x Vector) {
 | ||
| 	blas32.Stbmv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tpmv computes
 | ||
| //  x = A * x,   if t == blas.NoTrans,
 | ||
| //  x = A^T * x, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an n×n triangular matrix in packed format, and x is a vector.
 | ||
| func Tpmv(t blas.Transpose, a TriangularPacked, x Vector) {
 | ||
| 	blas32.Stpmv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Trsv solves
 | ||
| //  A * x = b,   if t == blas.NoTrans,
 | ||
| //  A^T * x = b, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an n×n triangular matrix, and x and b are vectors.
 | ||
| //
 | ||
| // At entry to the function, x contains the values of b, and the result is
 | ||
| // stored in-place into x.
 | ||
| //
 | ||
| // No test for singularity or near-singularity is included in this
 | ||
| // routine. Such tests must be performed before calling this routine.
 | ||
| func Trsv(t blas.Transpose, a Triangular, x Vector) {
 | ||
| 	blas32.Strsv(a.Uplo, t, a.Diag, a.N, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tbsv solves
 | ||
| //  A * x = b,   if t == blas.NoTrans,
 | ||
| //  A^T * x = b, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an n×n triangular band matrix, and x and b are vectors.
 | ||
| //
 | ||
| // At entry to the function, x contains the values of b, and the result is
 | ||
| // stored in place into x.
 | ||
| //
 | ||
| // No test for singularity or near-singularity is included in this
 | ||
| // routine. Such tests must be performed before calling this routine.
 | ||
| func Tbsv(t blas.Transpose, a TriangularBand, x Vector) {
 | ||
| 	blas32.Stbsv(a.Uplo, t, a.Diag, a.N, a.K, a.Data, a.Stride, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Tpsv solves
 | ||
| //  A * x = b,   if t == blas.NoTrans,
 | ||
| //  A^T * x = b, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where A is an n×n triangular matrix in packed format, and x and b are
 | ||
| // vectors.
 | ||
| //
 | ||
| // At entry to the function, x contains the values of b, and the result is
 | ||
| // stored in place into x.
 | ||
| //
 | ||
| // No test for singularity or near-singularity is included in this
 | ||
| // routine. Such tests must be performed before calling this routine.
 | ||
| func Tpsv(t blas.Transpose, a TriangularPacked, x Vector) {
 | ||
| 	blas32.Stpsv(a.Uplo, t, a.Diag, a.N, a.Data, x.Data, x.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Symv computes
 | ||
| //    y = alpha * A * x + beta * y,
 | ||
| // where A is an n×n symmetric matrix, x and y are vectors, and alpha and
 | ||
| // beta are scalars.
 | ||
| func Symv(alpha float32, a Symmetric, x Vector, beta float32, y Vector) {
 | ||
| 	blas32.Ssymv(a.Uplo, a.N, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Sbmv performs
 | ||
| //  y = alpha * A * x + beta * y,
 | ||
| // where A is an n×n symmetric band matrix, x and y are vectors, and alpha
 | ||
| // and beta are scalars.
 | ||
| func Sbmv(alpha float32, a SymmetricBand, x Vector, beta float32, y Vector) {
 | ||
| 	blas32.Ssbmv(a.Uplo, a.N, a.K, alpha, a.Data, a.Stride, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Spmv performs
 | ||
| //    y = alpha * A * x + beta * y,
 | ||
| // where A is an n×n symmetric matrix in packed format, x and y are vectors,
 | ||
| // and alpha and beta are scalars.
 | ||
| func Spmv(alpha float32, a SymmetricPacked, x Vector, beta float32, y Vector) {
 | ||
| 	blas32.Sspmv(a.Uplo, a.N, alpha, a.Data, x.Data, x.Inc, beta, y.Data, y.Inc)
 | ||
| }
 | ||
| 
 | ||
| // Ger performs a rank-1 update
 | ||
| //  A += alpha * x * y^T,
 | ||
| // where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
 | ||
| func Ger(alpha float32, x, y Vector, a General) {
 | ||
| 	blas32.Sger(a.Rows, a.Cols, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Syr performs a rank-1 update
 | ||
| //  A += alpha * x * x^T,
 | ||
| // where A is an n×n symmetric matrix, x is a vector, and alpha is a scalar.
 | ||
| func Syr(alpha float32, x Vector, a Symmetric) {
 | ||
| 	blas32.Ssyr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data, a.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Spr performs the rank-1 update
 | ||
| //  A += alpha * x * x^T,
 | ||
| // where A is an n×n symmetric matrix in packed format, x is a vector, and
 | ||
| // alpha is a scalar.
 | ||
| func Spr(alpha float32, x Vector, a SymmetricPacked) {
 | ||
| 	blas32.Sspr(a.Uplo, a.N, alpha, x.Data, x.Inc, a.Data)
 | ||
| }
 | ||
| 
 | ||
| // Syr2 performs a rank-2 update
 | ||
| //  A += alpha * x * y^T + alpha * y * x^T,
 | ||
| // where A is a symmetric n×n matrix, x and y are vectors, and alpha is a scalar.
 | ||
| func Syr2(alpha float32, x, y Vector, a Symmetric) {
 | ||
| 	blas32.Ssyr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data, a.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Spr2 performs a rank-2 update
 | ||
| //  A += alpha * x * y^T + alpha * y * x^T,
 | ||
| // where A is an n×n symmetric matrix in packed format, x and y are vectors,
 | ||
| // and alpha is a scalar.
 | ||
| func Spr2(alpha float32, x, y Vector, a SymmetricPacked) {
 | ||
| 	blas32.Sspr2(a.Uplo, a.N, alpha, x.Data, x.Inc, y.Data, y.Inc, a.Data)
 | ||
| }
 | ||
| 
 | ||
| // Level 3
 | ||
| 
 | ||
| // Gemm computes
 | ||
| //  C = alpha * A * B + beta * C,
 | ||
| // where A, B, and C are dense matrices, and alpha and beta are scalars.
 | ||
| // tA and tB specify whether A or B are transposed.
 | ||
| func Gemm(tA, tB blas.Transpose, alpha float32, a, b General, beta float32, c General) {
 | ||
| 	var m, n, k int
 | ||
| 	if tA == blas.NoTrans {
 | ||
| 		m, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		m, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	if tB == blas.NoTrans {
 | ||
| 		n = b.Cols
 | ||
| 	} else {
 | ||
| 		n = b.Rows
 | ||
| 	}
 | ||
| 	blas32.Sgemm(tA, tB, m, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Symm performs
 | ||
| //  C = alpha * A * B + beta * C, if s == blas.Left,
 | ||
| //  C = alpha * B * A + beta * C, if s == blas.Right,
 | ||
| // where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and
 | ||
| // alpha is a scalar.
 | ||
| func Symm(s blas.Side, alpha float32, a Symmetric, b General, beta float32, c General) {
 | ||
| 	var m, n int
 | ||
| 	if s == blas.Left {
 | ||
| 		m, n = a.N, b.Cols
 | ||
| 	} else {
 | ||
| 		m, n = b.Rows, a.N
 | ||
| 	}
 | ||
| 	blas32.Ssymm(s, a.Uplo, m, n, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Syrk performs a symmetric rank-k update
 | ||
| //  C = alpha * A * A^T + beta * C, if t == blas.NoTrans,
 | ||
| //  C = alpha * A^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where C is an n×n symmetric matrix, A is an n×k matrix if t == blas.NoTrans and
 | ||
| // a k×n matrix otherwise, and alpha and beta are scalars.
 | ||
| func Syrk(t blas.Transpose, alpha float32, a General, beta float32, c Symmetric) {
 | ||
| 	var n, k int
 | ||
| 	if t == blas.NoTrans {
 | ||
| 		n, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		n, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	blas32.Ssyrk(c.Uplo, t, n, k, alpha, a.Data, a.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Syr2k performs a symmetric rank-2k update
 | ||
| //  C = alpha * A * B^T + alpha * B * A^T + beta * C, if t == blas.NoTrans,
 | ||
| //  C = alpha * A^T * B + alpha * B^T * A + beta * C, if t == blas.Trans or blas.ConjTrans,
 | ||
| // where C is an n×n symmetric matrix, A and B are n×k matrices if t == NoTrans
 | ||
| // and k×n matrices otherwise, and alpha and beta are scalars.
 | ||
| func Syr2k(t blas.Transpose, alpha float32, a, b General, beta float32, c Symmetric) {
 | ||
| 	var n, k int
 | ||
| 	if t == blas.NoTrans {
 | ||
| 		n, k = a.Rows, a.Cols
 | ||
| 	} else {
 | ||
| 		n, k = a.Cols, a.Rows
 | ||
| 	}
 | ||
| 	blas32.Ssyr2k(c.Uplo, t, n, k, alpha, a.Data, a.Stride, b.Data, b.Stride, beta, c.Data, c.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Trmm performs
 | ||
| //  B = alpha * A * B,   if tA == blas.NoTrans and s == blas.Left,
 | ||
| //  B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
 | ||
| //  B = alpha * B * A,   if tA == blas.NoTrans and s == blas.Right,
 | ||
| //  B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
 | ||
| // where A is an n×n or m×m triangular matrix, B is an m×n matrix, and alpha is
 | ||
| // a scalar.
 | ||
| func Trmm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General) {
 | ||
| 	blas32.Strmm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
 | ||
| }
 | ||
| 
 | ||
| // Trsm solves
 | ||
| //  A * X = alpha * B,   if tA == blas.NoTrans and s == blas.Left,
 | ||
| //  A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Left,
 | ||
| //  X * A = alpha * B,   if tA == blas.NoTrans and s == blas.Right,
 | ||
| //  X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and s == blas.Right,
 | ||
| // where A is an n×n or m×m triangular matrix, X and B are m×n matrices, and
 | ||
| // alpha is a scalar.
 | ||
| //
 | ||
| // At entry to the function, X contains the values of B, and the result is
 | ||
| // stored in-place into X.
 | ||
| //
 | ||
| // No check is made that A is invertible.
 | ||
| func Trsm(s blas.Side, tA blas.Transpose, alpha float32, a Triangular, b General) {
 | ||
| 	blas32.Strsm(s, a.Uplo, tA, a.Diag, b.Rows, b.Cols, alpha, a.Data, a.Stride, b.Data, b.Stride)
 | ||
| }
 | 
