Files
gonum/lapack/testlapack/dtrtri.go
2025-02-01 22:18:04 +10:30

89 lines
2.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"math/rand/v2"
"testing"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
type Dtrtrier interface {
Dtrtri(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) bool
}
func DtrtriTest(t *testing.T, impl Dtrtrier) {
const tol = 1e-10
rnd := rand.New(rand.NewPCG(1, 1))
bi := blas64.Implementation()
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
for _, diag := range []blas.Diag{blas.NonUnit, blas.Unit} {
for _, test := range []struct {
n, lda int
}{
{3, 0},
{70, 0},
{200, 0},
{3, 5},
{70, 92},
{200, 205},
} {
n := test.n
lda := test.lda
if lda == 0 {
lda = n
}
// Allocate n×n matrix A and fill it with random numbers.
a := make([]float64, n*lda)
for i := range a {
a[i] = rnd.Float64()
}
for i := 0; i < n; i++ {
// This keeps the matrices well conditioned.
a[i*lda+i] += float64(n)
}
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Compute the inverse of the uplo triangle.
impl.Dtrtri(uplo, diag, n, a, lda)
// Zero out the opposite triangle.
if uplo == blas.Upper {
for i := 1; i < n; i++ {
for j := 0; j < i; j++ {
aCopy[i*lda+j] = 0
a[i*lda+j] = 0
}
}
} else {
for i := 0; i < n; i++ {
for j := i + 1; j < n; j++ {
aCopy[i*lda+j] = 0
a[i*lda+j] = 0
}
}
}
if diag == blas.Unit {
// Set the diagonal explicitly to 1.
for i := 0; i < n; i++ {
a[i*lda+i] = 1
aCopy[i*lda+i] = 1
}
}
// Compute A^{-1} * A and store the result in ans.
ans := make([]float64, len(a))
bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, a, lda, aCopy, lda, 0, ans, lda)
// Check that ans is the identity matrix.
dist := distFromIdentity(n, ans, lda)
if dist > tol {
t.Errorf("|inv(A) * A - I| = %v is too large. Upper = %v, unit = %v, n = %v, lda = %v",
dist, uplo == blas.Upper, diag == blas.Unit, n, lda)
}
}
}
}
}