mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 06:46:29 +08:00
443 lines
12 KiB
Go
443 lines
12 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package testlapack
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"math/rand/v2"
|
|
"testing"
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
"gonum.org/v1/gonum/lapack"
|
|
)
|
|
|
|
type Dtrevc3er interface {
|
|
Dtrevc3(side lapack.EVSide, howmny lapack.EVHowMany, selected []bool, n int, t []float64, ldt int, vl []float64, ldvl int, vr []float64, ldvr int, mm int, work []float64, lwork int) int
|
|
}
|
|
|
|
func Dtrevc3Test(t *testing.T, impl Dtrevc3er) {
|
|
rnd := rand.New(rand.NewPCG(1, 1))
|
|
|
|
for _, side := range []lapack.EVSide{lapack.EVRight, lapack.EVLeft, lapack.EVBoth} {
|
|
var name string
|
|
switch side {
|
|
case lapack.EVRight:
|
|
name = "EVRigth"
|
|
case lapack.EVLeft:
|
|
name = "EVLeft"
|
|
case lapack.EVBoth:
|
|
name = "EVBoth"
|
|
}
|
|
t.Run(name, func(t *testing.T) {
|
|
runDtrevc3Test(t, impl, rnd, side)
|
|
})
|
|
}
|
|
}
|
|
|
|
func runDtrevc3Test(t *testing.T, impl Dtrevc3er, rnd *rand.Rand, side lapack.EVSide) {
|
|
for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 10, 34} {
|
|
for _, extra := range []int{0, 11} {
|
|
for _, optwork := range []bool{true, false} {
|
|
for cas := 0; cas < 10; cas++ {
|
|
dtrevc3Test(t, impl, side, n, extra, optwork, rnd)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// dtrevc3Test tests Dtrevc3 by generating a random matrix T in Schur canonical
|
|
// form and performing the following checks:
|
|
// 1. Compute all eigenvectors of T and check that they are indeed correctly
|
|
// normalized eigenvectors
|
|
// 2. Compute selected eigenvectors and check that they are exactly equal to
|
|
// eigenvectors from check 1.
|
|
// 3. Compute all eigenvectors multiplied into a matrix Q and check that the
|
|
// result is equal to eigenvectors from step 1 multiplied by Q and scaled
|
|
// appropriately.
|
|
func dtrevc3Test(t *testing.T, impl Dtrevc3er, side lapack.EVSide, n, extra int, optwork bool, rnd *rand.Rand) {
|
|
const tol = 1e-15
|
|
|
|
name := fmt.Sprintf("n=%d,extra=%d,optwk=%v", n, extra, optwork)
|
|
|
|
right := side != lapack.EVLeft
|
|
left := side != lapack.EVRight
|
|
|
|
// Generate a random matrix in Schur canonical form possibly with tiny or zero eigenvalues.
|
|
// Zero elements of wi signify a real eigenvalue.
|
|
tmat, wr, wi := randomSchurCanonical(n, n+extra, true, rnd)
|
|
tmatCopy := cloneGeneral(tmat)
|
|
|
|
// 1. Compute all eigenvectors of T and check that they are indeed correctly
|
|
// normalized eigenvectors
|
|
|
|
howmny := lapack.EVAll
|
|
|
|
var vr, vl blas64.General
|
|
if right {
|
|
// Fill VR and VL with NaN because they should be completely overwritten in Dtrevc3.
|
|
vr = nanGeneral(n, n, n+extra)
|
|
}
|
|
if left {
|
|
vl = nanGeneral(n, n, n+extra)
|
|
}
|
|
|
|
var work []float64
|
|
if optwork {
|
|
work = []float64{0}
|
|
impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
|
|
vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), n, work, -1)
|
|
work = make([]float64, int(work[0]))
|
|
} else {
|
|
work = make([]float64, max(1, 3*n))
|
|
}
|
|
|
|
mGot := impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
|
|
vl.Data, max(1, vl.Stride), vr.Data, max(1, vr.Stride), n, work, len(work))
|
|
|
|
if !generalOutsideAllNaN(tmat) {
|
|
t.Errorf("%v: out-of-range write to T", name)
|
|
}
|
|
if !equalGeneral(tmat, tmatCopy) {
|
|
t.Errorf("%v: unexpected modification of T", name)
|
|
}
|
|
if !generalOutsideAllNaN(vr) {
|
|
t.Errorf("%v: out-of-range write to VR", name)
|
|
}
|
|
if !generalOutsideAllNaN(vl) {
|
|
t.Errorf("%v: out-of-range write to VL", name)
|
|
}
|
|
|
|
mWant := n
|
|
if mGot != mWant {
|
|
t.Errorf("%v: unexpected value of m=%d, want %d", name, mGot, mWant)
|
|
}
|
|
|
|
if right {
|
|
resid := residualRightEV(tmat, vr, wr, wi)
|
|
if resid > tol {
|
|
t.Errorf("%v: unexpected right eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
|
}
|
|
resid = residualEVNormalization(vr, wi)
|
|
if resid > tol {
|
|
t.Errorf("%v: unexpected normalization of right eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
|
}
|
|
}
|
|
if left {
|
|
resid := residualLeftEV(tmat, vl, wr, wi)
|
|
if resid > tol {
|
|
t.Errorf("%v: unexpected left eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
|
}
|
|
resid = residualEVNormalization(vl, wi)
|
|
if resid > tol {
|
|
t.Errorf("%v: unexpected normalization of left eigenvectors; residual=%v, want<=%v", name, resid, tol)
|
|
}
|
|
}
|
|
|
|
// 2. Compute selected eigenvectors and check that they are exactly equal to
|
|
// eigenvectors from check 1.
|
|
|
|
howmny = lapack.EVSelected
|
|
|
|
// Follow DCHKHS and select last max(1,n/4) real, max(1,n/4) complex
|
|
// eigenvectors instead of selecting them randomly.
|
|
selected := make([]bool, n)
|
|
selectedWant := make([]bool, n)
|
|
var nselr, nselc int
|
|
for j := n - 1; j > 0; {
|
|
if wi[j] == 0 {
|
|
if nselr < max(1, n/4) {
|
|
nselr++
|
|
selected[j] = true
|
|
selectedWant[j] = true
|
|
}
|
|
j--
|
|
} else {
|
|
if nselc < max(1, n/4) {
|
|
nselc++
|
|
// Select all columns to check that Dtrevc3 normalizes 'selected' correctly.
|
|
selected[j] = true
|
|
selected[j-1] = true
|
|
selectedWant[j] = false
|
|
selectedWant[j-1] = true
|
|
}
|
|
j -= 2
|
|
}
|
|
}
|
|
mWant = nselr + 2*nselc
|
|
|
|
var vrSel, vlSel blas64.General
|
|
if right {
|
|
vrSel = nanGeneral(n, mWant, n+extra)
|
|
}
|
|
if left {
|
|
vlSel = nanGeneral(n, mWant, n+extra)
|
|
}
|
|
|
|
if optwork {
|
|
// Reallocate optimal work in case it depends on howmny and selected.
|
|
work = []float64{0}
|
|
impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
|
|
vlSel.Data, max(1, vlSel.Stride), vrSel.Data, max(1, vrSel.Stride), mWant, work, -1)
|
|
work = make([]float64, int(work[0]))
|
|
}
|
|
|
|
mGot = impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
|
|
vlSel.Data, max(1, vlSel.Stride), vrSel.Data, max(1, vrSel.Stride), mWant, work, len(work))
|
|
|
|
if !generalOutsideAllNaN(tmat) {
|
|
t.Errorf("%v: out-of-range write to T", name)
|
|
}
|
|
if !equalGeneral(tmat, tmatCopy) {
|
|
t.Errorf("%v: unexpected modification of T", name)
|
|
}
|
|
if !generalOutsideAllNaN(vrSel) {
|
|
t.Errorf("%v: out-of-range write to selected VR", name)
|
|
}
|
|
if !generalOutsideAllNaN(vlSel) {
|
|
t.Errorf("%v: out-of-range write to selected VL", name)
|
|
}
|
|
|
|
if mGot != mWant {
|
|
t.Errorf("%v: unexpected value of selected m=%d, want %d", name, mGot, mWant)
|
|
}
|
|
|
|
for i := range selected {
|
|
if selected[i] != selectedWant[i] {
|
|
t.Errorf("%v: unexpected selected[%v]", name, i)
|
|
}
|
|
}
|
|
|
|
// Check that selected columns of vrSel are equal to the corresponding
|
|
// columns of vr.
|
|
var k int
|
|
match := true
|
|
if right {
|
|
loopVR:
|
|
for j := 0; j < n; j++ {
|
|
if selected[j] && wi[j] == 0 {
|
|
for i := 0; i < n; i++ {
|
|
if vrSel.Data[i*vrSel.Stride+k] != vr.Data[i*vr.Stride+j] {
|
|
match = false
|
|
break loopVR
|
|
}
|
|
}
|
|
k++
|
|
} else if selected[j] && wi[j] != 0 {
|
|
for i := 0; i < n; i++ {
|
|
if vrSel.Data[i*vrSel.Stride+k] != vr.Data[i*vr.Stride+j] ||
|
|
vrSel.Data[i*vrSel.Stride+k+1] != vr.Data[i*vr.Stride+j+1] {
|
|
match = false
|
|
break loopVR
|
|
}
|
|
}
|
|
k += 2
|
|
}
|
|
}
|
|
}
|
|
if !match {
|
|
t.Errorf("%v: unexpected selected VR", name)
|
|
}
|
|
|
|
// Check that selected columns of vlSel are equal to the corresponding
|
|
// columns of vl.
|
|
match = true
|
|
k = 0
|
|
if left {
|
|
loopVL:
|
|
for j := 0; j < n; j++ {
|
|
if selected[j] && wi[j] == 0 {
|
|
for i := 0; i < n; i++ {
|
|
if vlSel.Data[i*vlSel.Stride+k] != vl.Data[i*vl.Stride+j] {
|
|
match = false
|
|
break loopVL
|
|
}
|
|
}
|
|
k++
|
|
} else if selected[j] && wi[j] != 0 {
|
|
for i := 0; i < n; i++ {
|
|
if vlSel.Data[i*vlSel.Stride+k] != vl.Data[i*vl.Stride+j] ||
|
|
vlSel.Data[i*vlSel.Stride+k+1] != vl.Data[i*vl.Stride+j+1] {
|
|
match = false
|
|
break loopVL
|
|
}
|
|
}
|
|
k += 2
|
|
}
|
|
}
|
|
}
|
|
if !match {
|
|
t.Errorf("%v: unexpected selected VL", name)
|
|
}
|
|
|
|
// 3. Compute all eigenvectors multiplied into a matrix Q and check that the
|
|
// result is equal to eigenvectors from step 1 multiplied by Q and scaled
|
|
// appropriately.
|
|
|
|
howmny = lapack.EVAllMulQ
|
|
|
|
var vrMul, qr blas64.General
|
|
var vlMul, ql blas64.General
|
|
if right {
|
|
vrMul = randomGeneral(n, n, n+extra, rnd)
|
|
qr = cloneGeneral(vrMul)
|
|
}
|
|
if left {
|
|
vlMul = randomGeneral(n, n, n+extra, rnd)
|
|
ql = cloneGeneral(vlMul)
|
|
}
|
|
|
|
if optwork {
|
|
// Reallocate optimal work in case it depends on howmny and selected.
|
|
work = []float64{0}
|
|
impl.Dtrevc3(side, howmny, nil, n, tmat.Data, tmat.Stride,
|
|
vlMul.Data, max(1, vlMul.Stride), vrMul.Data, max(1, vrMul.Stride), n, work, -1)
|
|
work = make([]float64, int(work[0]))
|
|
}
|
|
|
|
mGot = impl.Dtrevc3(side, howmny, selected, n, tmat.Data, tmat.Stride,
|
|
vlMul.Data, max(1, vlMul.Stride), vrMul.Data, max(1, vrMul.Stride), n, work, len(work))
|
|
|
|
if !generalOutsideAllNaN(tmat) {
|
|
t.Errorf("%v: out-of-range write to T", name)
|
|
}
|
|
if !equalGeneral(tmat, tmatCopy) {
|
|
t.Errorf("%v: unexpected modification of T", name)
|
|
}
|
|
if !generalOutsideAllNaN(vrMul) {
|
|
t.Errorf("%v: out-of-range write to VRMul", name)
|
|
}
|
|
if !generalOutsideAllNaN(vlMul) {
|
|
t.Errorf("%v: out-of-range write to VLMul", name)
|
|
}
|
|
|
|
mWant = n
|
|
if mGot != mWant {
|
|
t.Errorf("%v: unexpected value of m=%d, want %d", name, mGot, mWant)
|
|
}
|
|
|
|
if right {
|
|
// Compute Q * VR explicitly and normalize to match Dtrevc3 output.
|
|
qvWant := zeros(n, n, n)
|
|
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qr, vr, 0, qvWant)
|
|
normalizeEV(qvWant, wi)
|
|
|
|
// Compute the difference between Dtrevc3 output and Q * VR.
|
|
r := zeros(n, n, n)
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < n; j++ {
|
|
r.Data[i*r.Stride+j] = vrMul.Data[i*vrMul.Stride+j] - qvWant.Data[i*qvWant.Stride+j]
|
|
}
|
|
}
|
|
qvNorm := dlange(lapack.MaxColumnSum, n, n, qvWant.Data, qvWant.Stride)
|
|
resid := dlange(lapack.MaxColumnSum, n, n, r.Data, r.Stride) / qvNorm / float64(n)
|
|
if resid > tol {
|
|
t.Errorf("%v: unexpected VRMul; resid=%v, want <=%v", name, resid, tol)
|
|
}
|
|
}
|
|
if left {
|
|
// Compute Q * VL explicitly and normalize to match Dtrevc3 output.
|
|
qvWant := zeros(n, n, n)
|
|
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, ql, vl, 0, qvWant)
|
|
normalizeEV(qvWant, wi)
|
|
|
|
// Compute the difference between Dtrevc3 output and Q * VL.
|
|
r := zeros(n, n, n)
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < n; j++ {
|
|
r.Data[i*r.Stride+j] = vlMul.Data[i*vlMul.Stride+j] - qvWant.Data[i*qvWant.Stride+j]
|
|
}
|
|
}
|
|
qvNorm := dlange(lapack.MaxColumnSum, n, n, qvWant.Data, qvWant.Stride)
|
|
resid := dlange(lapack.MaxColumnSum, n, n, r.Data, r.Stride) / qvNorm / float64(n)
|
|
if resid > tol {
|
|
t.Errorf("%v: unexpected VLMul; resid=%v, want <=%v", name, resid, tol)
|
|
}
|
|
}
|
|
}
|
|
|
|
// residualEVNormalization returns the maximum normalization error in E:
|
|
//
|
|
// max |max-norm(E[:,j]) - 1|
|
|
func residualEVNormalization(emat blas64.General, wi []float64) float64 {
|
|
n := emat.Rows
|
|
if n == 0 {
|
|
return 0
|
|
}
|
|
var (
|
|
e = emat.Data
|
|
lde = emat.Stride
|
|
enrmin = math.Inf(1)
|
|
enrmax float64
|
|
ipair int
|
|
)
|
|
for j := 0; j < n; j++ {
|
|
if ipair == 0 && j < n-1 && wi[j] != 0 {
|
|
ipair = 1
|
|
}
|
|
var nrm float64
|
|
switch ipair {
|
|
case 0:
|
|
// Real eigenvector
|
|
for i := 0; i < n; i++ {
|
|
nrm = math.Max(nrm, math.Abs(e[i*lde+j]))
|
|
}
|
|
enrmin = math.Min(enrmin, nrm)
|
|
enrmax = math.Max(enrmax, nrm)
|
|
case 1:
|
|
// Complex eigenvector
|
|
for i := 0; i < n; i++ {
|
|
nrm = math.Max(nrm, math.Abs(e[i*lde+j])+math.Abs(e[i*lde+j+1]))
|
|
}
|
|
enrmin = math.Min(enrmin, nrm)
|
|
enrmax = math.Max(enrmax, nrm)
|
|
ipair = 2
|
|
case 2:
|
|
ipair = 0
|
|
}
|
|
}
|
|
return math.Max(math.Abs(enrmin-1), math.Abs(enrmax-1))
|
|
}
|
|
|
|
// normalizeEV normalizes eigenvectors in the columns of E so that the element
|
|
// of largest magnitude has magnitude 1.
|
|
func normalizeEV(emat blas64.General, wi []float64) {
|
|
n := emat.Rows
|
|
if n == 0 {
|
|
return
|
|
}
|
|
var (
|
|
bi = blas64.Implementation()
|
|
e = emat.Data
|
|
lde = emat.Stride
|
|
ipair int
|
|
)
|
|
for j := 0; j < n; j++ {
|
|
if ipair == 0 && j < n-1 && wi[j] != 0 {
|
|
ipair = 1
|
|
}
|
|
switch ipair {
|
|
case 0:
|
|
// Real eigenvector
|
|
ii := bi.Idamax(n, e[j:], lde)
|
|
remax := 1 / math.Abs(e[ii*lde+j])
|
|
bi.Dscal(n, remax, e[j:], lde)
|
|
case 1:
|
|
// Complex eigenvector
|
|
var emax float64
|
|
for i := 0; i < n; i++ {
|
|
emax = math.Max(emax, math.Abs(e[i*lde+j])+math.Abs(e[i*lde+j+1]))
|
|
}
|
|
bi.Dscal(n, 1/emax, e[j:], lde)
|
|
bi.Dscal(n, 1/emax, e[j+1:], lde)
|
|
ipair = 2
|
|
case 2:
|
|
ipair = 0
|
|
}
|
|
}
|
|
}
|