mirror of
https://github.com/gonum/gonum.git
synced 2025-09-28 03:52:16 +08:00
102 lines
3.5 KiB
Go
102 lines
3.5 KiB
Go
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package testlapack
|
|
|
|
import (
|
|
"fmt"
|
|
"math/rand/v2"
|
|
"testing"
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
)
|
|
|
|
type Dpbtrfer interface {
|
|
Dpbtrf(uplo blas.Uplo, n, kd int, ab []float64, ldab int) (ok bool)
|
|
}
|
|
|
|
// DpbtrfTest tests a band Cholesky factorization on random symmetric positive definite
|
|
// band matrices by checking that the Cholesky factors multiply back to the original matrix.
|
|
func DpbtrfTest(t *testing.T, impl Dpbtrfer) {
|
|
// TODO(vladimir-ch): include expected-failure test case.
|
|
|
|
// With the current implementation of Ilaenv the blocked code path is taken if kd > 64.
|
|
// Unfortunately, with the block size nb=32 this also means that in Dpbtrf
|
|
// it never happens that i2 <= 0 and the state coverage (unlike code coverage) is not complete.
|
|
rnd := rand.New(rand.NewPCG(1, 1))
|
|
for _, n := range []int{0, 1, 2, 3, 4, 5, 64, 65, 66, 91, 96, 97, 101, 128, 130} {
|
|
for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} {
|
|
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
|
|
for _, ldab := range []int{kd + 1, kd + 1 + 7} {
|
|
dpbtrfTest(t, impl, uplo, n, kd, ldab, rnd)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func dpbtrfTest(t *testing.T, impl Dpbtrfer, uplo blas.Uplo, n, kd int, ldab int, rnd *rand.Rand) {
|
|
const tol = 1e-12
|
|
|
|
name := fmt.Sprintf("uplo=%v,n=%v,kd=%v,ldab=%v", string(uplo), n, kd, ldab)
|
|
|
|
// Generate a random symmetric positive definite band matrix.
|
|
ab := randSymBand(uplo, n, kd, ldab, rnd)
|
|
|
|
// Compute the Cholesky decomposition of A.
|
|
abFac := make([]float64, len(ab))
|
|
copy(abFac, ab)
|
|
ok := impl.Dpbtrf(uplo, n, kd, abFac, ldab)
|
|
if !ok {
|
|
t.Fatalf("%v: bad test matrix, Dpbtrf failed", name)
|
|
}
|
|
|
|
// Reconstruct an symmetric band matrix from the Uᵀ*U or L*Lᵀ factorization, overwriting abFac.
|
|
dsbmm(uplo, n, kd, abFac, ldab)
|
|
|
|
// Compute and check the max-norm distance between the reconstructed and original matrix A.
|
|
dist := distSymBand(uplo, n, kd, abFac, ldab, ab, ldab)
|
|
if dist > tol*float64(n) {
|
|
t.Errorf("%v: unexpected result, diff=%v", name, dist)
|
|
}
|
|
}
|
|
|
|
// dsbmm computes a symmetric band matrix A
|
|
//
|
|
// A = Uᵀ*U if uplo == blas.Upper,
|
|
// A = L*Lᵀ if uplo == blas.Lower,
|
|
//
|
|
// where U and L is an upper, respectively lower, triangular band matrix
|
|
// stored on entry in ab. The result is stored in-place into ab.
|
|
func dsbmm(uplo blas.Uplo, n, kd int, ab []float64, ldab int) {
|
|
bi := blas64.Implementation()
|
|
switch uplo {
|
|
case blas.Upper:
|
|
// Compute the product Uᵀ * U.
|
|
for k := n - 1; k >= 0; k-- {
|
|
klen := min(kd, n-k-1) // Number of stored off-diagonal elements in the row
|
|
// Add a multiple of row k of the factor U to each of rows k+1 through n.
|
|
if klen > 0 {
|
|
bi.Dsyr(blas.Upper, klen, 1, ab[k*ldab+1:], 1, ab[(k+1)*ldab:], ldab-1)
|
|
}
|
|
// Scale row k by the diagonal element.
|
|
bi.Dscal(klen+1, ab[k*ldab], ab[k*ldab:], 1)
|
|
}
|
|
case blas.Lower:
|
|
// Compute the product L * Lᵀ.
|
|
for k := n - 1; k >= 0; k-- {
|
|
kc := max(0, kd-k) // Index of the first valid element in the row
|
|
klen := kd - kc // Number of stored off-diagonal elements in the row
|
|
// Compute the diagonal [k,k] element.
|
|
ab[k*ldab+kd] = bi.Ddot(klen+1, ab[k*ldab+kc:], 1, ab[k*ldab+kc:], 1)
|
|
// Compute the rest of column k.
|
|
if klen > 0 {
|
|
bi.Dtrmv(blas.Lower, blas.NoTrans, blas.NonUnit, klen,
|
|
ab[(k-klen)*ldab+kd:], ldab-1, ab[k*ldab+kc:], 1)
|
|
}
|
|
}
|
|
}
|
|
}
|