mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 11:32:32 +08:00
174 lines
5.0 KiB
Go
174 lines
5.0 KiB
Go
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package testlapack
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
"math/rand/v2"
|
||
"testing"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
"gonum.org/v1/gonum/floats"
|
||
)
|
||
|
||
type Dlatbser interface {
|
||
Dlatbs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, normin bool, n, kd int, ab []float64, ldab int, x []float64, cnorm []float64) float64
|
||
}
|
||
|
||
// DlatbsTest tests Dlatbs by generating a random triangular band system and
|
||
// checking that a residual for the computed solution is small.
|
||
func DlatbsTest(t *testing.T, impl Dlatbser) {
|
||
rnd := rand.New(rand.NewPCG(1, 1))
|
||
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 50} {
|
||
for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} {
|
||
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
|
||
for _, trans := range []blas.Transpose{blas.NoTrans, blas.Trans, blas.ConjTrans} {
|
||
for _, ldab := range []int{kd + 1, kd + 1 + 7} {
|
||
for _, kind := range []int{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18} {
|
||
dlatbsTest(t, impl, rnd, kind, uplo, trans, n, kd, ldab)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
func dlatbsTest(t *testing.T, impl Dlatbser, rnd *rand.Rand, kind int, uplo blas.Uplo, trans blas.Transpose, n, kd, ldab int) {
|
||
const eps = 1e-15
|
||
|
||
// Allocate a triangular band matrix.
|
||
var ab []float64
|
||
if n > 0 {
|
||
ab = make([]float64, (n-1)*ldab+kd+1)
|
||
}
|
||
for i := range ab {
|
||
ab[i] = rnd.NormFloat64()
|
||
}
|
||
|
||
// Generate a triangular test matrix and the right-hand side.
|
||
diag, b := dlattb(kind, uplo, trans, n, kd, ab, ldab, rnd)
|
||
|
||
// Make a copy of AB to make sure that it is not modified in Dlatbs.
|
||
abCopy := make([]float64, len(ab))
|
||
copy(abCopy, ab)
|
||
|
||
// Allocate cnorm and fill it with impossible result to make sure that it
|
||
// _is_ updated in the first Dlatbs call below.
|
||
cnorm := make([]float64, n)
|
||
for i := range cnorm {
|
||
cnorm[i] = -1
|
||
}
|
||
|
||
// Solve the system op(A)*x = b.
|
||
x := make([]float64, n)
|
||
copy(x, b)
|
||
scale := impl.Dlatbs(uplo, trans, diag, false, n, kd, ab, ldab, x, cnorm)
|
||
|
||
name := fmt.Sprintf("kind=%v,uplo=%v,trans=%v,diag=%v,n=%v,kd=%v,ldab=%v",
|
||
kind, string(uplo), string(trans), string(diag), n, kd, ldab)
|
||
|
||
if !floats.Equal(ab, abCopy) {
|
||
t.Errorf("%v: unexpected modification of ab", name)
|
||
}
|
||
if floats.Count(func(v float64) bool { return v == -1 }, cnorm) > 0 {
|
||
t.Errorf("%v: expected modification of cnorm", name)
|
||
}
|
||
|
||
resid := dlatbsResidual(uplo, trans, diag, n, kd, ab, ldab, scale, cnorm, b, x)
|
||
if resid >= eps {
|
||
t.Errorf("%v: unexpected result when normin=false. residual=%v", name, resid)
|
||
}
|
||
|
||
// Make a copy of cnorm to check that it is _not_ modified.
|
||
cnormCopy := make([]float64, len(cnorm))
|
||
copy(cnormCopy, cnorm)
|
||
// Restore x.
|
||
copy(x, b)
|
||
// Solve the system op(A)*x = b again with normin = true.
|
||
scale = impl.Dlatbs(uplo, trans, diag, true, n, kd, ab, ldab, x, cnorm)
|
||
|
||
// Cannot test for exact equality because Dlatbs may scale cnorm by s and
|
||
// then by 1/s before return.
|
||
if !floats.EqualApprox(cnorm, cnormCopy, 1e-15) {
|
||
t.Errorf("%v: unexpected modification of cnorm", name)
|
||
}
|
||
|
||
resid = dlatbsResidual(uplo, trans, diag, n, kd, ab, ldab, scale, cnorm, b, x)
|
||
if resid >= eps {
|
||
t.Errorf("%v: unexpected result when normin=true. residual=%v", name, resid)
|
||
}
|
||
}
|
||
|
||
// dlatbsResidual returns the residual for the solution to a scaled triangular
|
||
// system of equations A*x = s*b or Aᵀ*x = s*b when A is an n×n triangular
|
||
// band matrix with kd super- or sub-diagonals. The residual is computed as
|
||
//
|
||
// norm( op(A)*x - scale*b ) / ( norm(op(A)) * norm(x) ).
|
||
//
|
||
// This function corresponds to DTBT03 in Reference LAPACK.
|
||
func dlatbsResidual(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, kd int, ab []float64, ldab int, scale float64, cnorm, b, x []float64) float64 {
|
||
if n == 0 {
|
||
return 0
|
||
}
|
||
|
||
// Compute the norm of the triangular matrix A using the columns norms
|
||
// already computed by Dlatbs.
|
||
var tnorm float64
|
||
if diag == blas.NonUnit {
|
||
if uplo == blas.Upper {
|
||
for j := 0; j < n; j++ {
|
||
tnorm = math.Max(tnorm, math.Abs(ab[j*ldab])+cnorm[j])
|
||
}
|
||
} else {
|
||
for j := 0; j < n; j++ {
|
||
tnorm = math.Max(tnorm, math.Abs(ab[j*ldab+kd])+cnorm[j])
|
||
}
|
||
}
|
||
} else {
|
||
for j := 0; j < n; j++ {
|
||
tnorm = math.Max(tnorm, 1+cnorm[j])
|
||
}
|
||
}
|
||
|
||
const (
|
||
eps = dlamchE
|
||
tiny = safmin
|
||
)
|
||
|
||
bi := blas64.Implementation()
|
||
|
||
ix := bi.Idamax(n, x, 1)
|
||
xNorm := math.Max(1, math.Abs(x[ix]))
|
||
xScal := (1 / xNorm) / float64(kd+1)
|
||
|
||
resid := make([]float64, len(x))
|
||
copy(resid, x)
|
||
bi.Dscal(n, xScal, resid, 1)
|
||
bi.Dtbmv(uplo, trans, diag, n, kd, ab, ldab, resid, 1)
|
||
bi.Daxpy(n, -scale*xScal, b, 1, resid, 1)
|
||
|
||
ix = bi.Idamax(n, resid, 1)
|
||
residNorm := math.Abs(resid[ix])
|
||
if residNorm*tiny <= xNorm {
|
||
if xNorm > 0 {
|
||
residNorm /= xNorm
|
||
}
|
||
} else if residNorm > 0 {
|
||
residNorm = 1 / eps
|
||
}
|
||
if residNorm*tiny <= tnorm {
|
||
if tnorm > 0 {
|
||
residNorm /= tnorm
|
||
}
|
||
} else if residNorm > 0 {
|
||
residNorm = 1 / eps
|
||
}
|
||
|
||
return residNorm
|
||
}
|