mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 11:32:32 +08:00
123 lines
3.1 KiB
Go
123 lines
3.1 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package testlapack
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"math/rand/v2"
|
|
"sort"
|
|
"testing"
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
"gonum.org/v1/gonum/floats"
|
|
"gonum.org/v1/gonum/lapack"
|
|
)
|
|
|
|
type Dlasq2er interface {
|
|
Dlasq2(n int, z []float64) (info int)
|
|
|
|
Dsyev(jobz lapack.EVJob, uplo blas.Uplo, n int, a []float64, lda int, w, work []float64, lwork int) (ok bool)
|
|
}
|
|
|
|
func Dlasq2Test(t *testing.T, impl Dlasq2er) {
|
|
const tol = 1e-14
|
|
|
|
rnd := rand.New(rand.NewPCG(1, 1))
|
|
for _, n := range []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 25, 50} {
|
|
for k := 0; k < 10; k++ {
|
|
for typ := 0; typ <= 2; typ++ {
|
|
name := fmt.Sprintf("n=%v,typ=%v", n, typ)
|
|
|
|
want := make([]float64, n)
|
|
z := make([]float64, 4*n)
|
|
switch typ {
|
|
case 0:
|
|
// L is the identity, U has zero diagonal.
|
|
case 1:
|
|
// L is the identity, U has random diagonal, and so T is upper triangular.
|
|
for i := 0; i < n; i++ {
|
|
z[2*i] = rnd.Float64()
|
|
want[i] = z[2*i]
|
|
}
|
|
sort.Float64s(want)
|
|
case 2:
|
|
// Random tridiagonal matrix
|
|
for i := range z {
|
|
z[i] = rnd.Float64()
|
|
}
|
|
// The slice 'want' is computed below.
|
|
}
|
|
zCopy := make([]float64, len(z))
|
|
copy(zCopy, z)
|
|
|
|
// Compute the eigenvalues of the symmetric positive definite
|
|
// tridiagonal matrix associated with the slice z.
|
|
info := impl.Dlasq2(n, z)
|
|
if info != 0 {
|
|
t.Fatalf("%v: Dlasq2 failed", name)
|
|
}
|
|
|
|
if n == 0 {
|
|
continue
|
|
}
|
|
|
|
got := z[:n]
|
|
|
|
if typ == 2 {
|
|
// Compute the expected result.
|
|
|
|
// Compute the non-symmetric tridiagonal matrix T = L*U where L and
|
|
// U are represented by the slice z.
|
|
ldt := n
|
|
T := make([]float64, n*ldt)
|
|
for i := 0; i < n; i++ {
|
|
if i == 0 {
|
|
T[0] = zCopy[0]
|
|
} else {
|
|
T[i*ldt+i] = zCopy[2*i-1] + zCopy[2*i]
|
|
}
|
|
if i < n-1 {
|
|
T[i*ldt+i+1] = 1
|
|
T[(i+1)*ldt+i] = zCopy[2*i+1] * zCopy[2*i]
|
|
}
|
|
}
|
|
// Compute the symmetric tridiagonal matrix by applying a similarity
|
|
// transformation on T: D^{-1}*T*D. See discussion and references in
|
|
// http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=5&t=4839
|
|
d := make([]float64, n)
|
|
d[0] = 1
|
|
for i := 1; i < n; i++ {
|
|
d[i] = d[i-1] * T[i*ldt+i-1] / T[(i-1)*ldt+i]
|
|
}
|
|
for i, di := range d {
|
|
d[i] = math.Sqrt(di)
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
// Update only the upper triangle.
|
|
for j := i; j <= min(i+1, n-1); j++ {
|
|
T[i*ldt+j] *= d[j] / d[i]
|
|
}
|
|
}
|
|
|
|
// Compute the eigenvalues of D^{-1}*T*D by using Dsyev. It's call
|
|
// tree doesn't include Dlasq2.
|
|
work := make([]float64, 3*n)
|
|
ok := impl.Dsyev(lapack.EVNone, blas.Upper, n, T, ldt, want, work, len(work))
|
|
if !ok {
|
|
t.Fatalf("%v: Dsyev failed", name)
|
|
}
|
|
}
|
|
|
|
sort.Float64s(got)
|
|
diff := floats.Distance(got, want, math.Inf(1))
|
|
if diff > tol {
|
|
t.Errorf("%v: unexpected eigenvalues; diff=%v\n%v\n%v\n\n", name, diff, got, want)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|