mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 06:46:29 +08:00
127 lines
3.0 KiB
Go
127 lines
3.0 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package testlapack
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
"math/rand/v2"
|
||
"sort"
|
||
"testing"
|
||
|
||
"gonum.org/v1/gonum/floats"
|
||
)
|
||
|
||
type Dlasq1er interface {
|
||
Dlasq1(n int, d, e, work []float64) int
|
||
|
||
Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int)
|
||
}
|
||
|
||
func Dlasq1Test(t *testing.T, impl Dlasq1er) {
|
||
const tol = 1e-14
|
||
rnd := rand.New(rand.NewPCG(1, 1))
|
||
for _, n := range []int{0, 1, 2, 3, 4, 5, 8, 10, 30, 50} {
|
||
for typ := 0; typ <= 7; typ++ {
|
||
name := fmt.Sprintf("n=%v,typ=%v", n, typ)
|
||
|
||
// Generate a diagonal matrix D with positive entries.
|
||
d := make([]float64, n)
|
||
switch typ {
|
||
case 0:
|
||
// The zero matrix.
|
||
case 1:
|
||
// The identity matrix.
|
||
for i := range d {
|
||
d[i] = 1
|
||
}
|
||
case 2:
|
||
// A diagonal matrix with evenly spaced entries 1, ..., eps.
|
||
for i := 0; i < n; i++ {
|
||
if i == 0 {
|
||
d[0] = 1
|
||
} else {
|
||
d[i] = 1 - (1-dlamchE)*float64(i)/float64(n-1)
|
||
}
|
||
}
|
||
case 3, 4, 5:
|
||
// A diagonal matrix with geometrically spaced entries 1, ..., eps.
|
||
for i := 0; i < n; i++ {
|
||
if i == 0 {
|
||
d[0] = 1
|
||
} else {
|
||
d[i] = math.Pow(dlamchE, float64(i)/float64(n-1))
|
||
}
|
||
}
|
||
switch typ {
|
||
case 4:
|
||
// Multiply by SQRT(overflow threshold).
|
||
floats.Scale(math.Sqrt(1/dlamchS), d)
|
||
case 5:
|
||
// Multiply by SQRT(underflow threshold).
|
||
floats.Scale(math.Sqrt(dlamchS), d)
|
||
}
|
||
case 6:
|
||
// A diagonal matrix with "clustered" entries 1, eps, ..., eps.
|
||
for i := range d {
|
||
if i == 0 {
|
||
d[i] = 1
|
||
} else {
|
||
d[i] = dlamchE
|
||
}
|
||
}
|
||
case 7:
|
||
// Diagonal matrix with random entries.
|
||
for i := range d {
|
||
d[i] = math.Abs(rnd.NormFloat64())
|
||
}
|
||
}
|
||
|
||
dWant := make([]float64, n)
|
||
copy(dWant, d)
|
||
sort.Sort(sort.Reverse(sort.Float64Slice(dWant)))
|
||
|
||
// Allocate work slice to the maximum length needed below.
|
||
work := make([]float64, max(1, 4*n))
|
||
|
||
// Generate an n×n matrix A by pre- and post-multiplying D with
|
||
// random orthogonal matrices:
|
||
// A = U*D*V.
|
||
lda := max(1, n)
|
||
a := make([]float64, n*lda)
|
||
Dlagge(n, n, 0, 0, d, a, lda, rnd, work)
|
||
|
||
// Reduce A to bidiagonal form B represented by the diagonal d and
|
||
// off-diagonal e.
|
||
tauQ := make([]float64, n)
|
||
tauP := make([]float64, n)
|
||
e := make([]float64, max(0, n-1))
|
||
impl.Dgebrd(n, n, a, lda, d, e, tauQ, tauP, work, len(work))
|
||
|
||
// Compute the singular values of B.
|
||
for i := range work {
|
||
work[i] = math.NaN()
|
||
}
|
||
info := impl.Dlasq1(n, d, e, work)
|
||
if info != 0 {
|
||
t.Fatalf("%v: Dlasq1 returned non-zero info=%v", name, info)
|
||
}
|
||
|
||
if n == 0 {
|
||
continue
|
||
}
|
||
|
||
if !sort.IsSorted(sort.Reverse(sort.Float64Slice(d))) {
|
||
t.Errorf("%v: singular values not sorted", name)
|
||
}
|
||
|
||
diff := floats.Distance(d, dWant, math.Inf(1))
|
||
if diff > tol*floats.Max(dWant) {
|
||
t.Errorf("%v: unexpected result; diff=%v", name, diff)
|
||
}
|
||
}
|
||
}
|
||
}
|