Files
gonum/lapack/testlapack/dlasq1.go
2025-02-01 22:18:04 +10:30

127 lines
3.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"math/rand/v2"
"sort"
"testing"
"gonum.org/v1/gonum/floats"
)
type Dlasq1er interface {
Dlasq1(n int, d, e, work []float64) int
Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int)
}
func Dlasq1Test(t *testing.T, impl Dlasq1er) {
const tol = 1e-14
rnd := rand.New(rand.NewPCG(1, 1))
for _, n := range []int{0, 1, 2, 3, 4, 5, 8, 10, 30, 50} {
for typ := 0; typ <= 7; typ++ {
name := fmt.Sprintf("n=%v,typ=%v", n, typ)
// Generate a diagonal matrix D with positive entries.
d := make([]float64, n)
switch typ {
case 0:
// The zero matrix.
case 1:
// The identity matrix.
for i := range d {
d[i] = 1
}
case 2:
// A diagonal matrix with evenly spaced entries 1, ..., eps.
for i := 0; i < n; i++ {
if i == 0 {
d[0] = 1
} else {
d[i] = 1 - (1-dlamchE)*float64(i)/float64(n-1)
}
}
case 3, 4, 5:
// A diagonal matrix with geometrically spaced entries 1, ..., eps.
for i := 0; i < n; i++ {
if i == 0 {
d[0] = 1
} else {
d[i] = math.Pow(dlamchE, float64(i)/float64(n-1))
}
}
switch typ {
case 4:
// Multiply by SQRT(overflow threshold).
floats.Scale(math.Sqrt(1/dlamchS), d)
case 5:
// Multiply by SQRT(underflow threshold).
floats.Scale(math.Sqrt(dlamchS), d)
}
case 6:
// A diagonal matrix with "clustered" entries 1, eps, ..., eps.
for i := range d {
if i == 0 {
d[i] = 1
} else {
d[i] = dlamchE
}
}
case 7:
// Diagonal matrix with random entries.
for i := range d {
d[i] = math.Abs(rnd.NormFloat64())
}
}
dWant := make([]float64, n)
copy(dWant, d)
sort.Sort(sort.Reverse(sort.Float64Slice(dWant)))
// Allocate work slice to the maximum length needed below.
work := make([]float64, max(1, 4*n))
// Generate an n×n matrix A by pre- and post-multiplying D with
// random orthogonal matrices:
// A = U*D*V.
lda := max(1, n)
a := make([]float64, n*lda)
Dlagge(n, n, 0, 0, d, a, lda, rnd, work)
// Reduce A to bidiagonal form B represented by the diagonal d and
// off-diagonal e.
tauQ := make([]float64, n)
tauP := make([]float64, n)
e := make([]float64, max(0, n-1))
impl.Dgebrd(n, n, a, lda, d, e, tauQ, tauP, work, len(work))
// Compute the singular values of B.
for i := range work {
work[i] = math.NaN()
}
info := impl.Dlasq1(n, d, e, work)
if info != 0 {
t.Fatalf("%v: Dlasq1 returned non-zero info=%v", name, info)
}
if n == 0 {
continue
}
if !sort.IsSorted(sort.Reverse(sort.Float64Slice(d))) {
t.Errorf("%v: singular values not sorted", name)
}
diff := floats.Distance(d, dWant, math.Inf(1))
if diff > tol*floats.Max(dWant) {
t.Errorf("%v: unexpected result; diff=%v", name, diff)
}
}
}
}