Files
gonum/lapack/testlapack/dgeqrf.go
2025-02-01 22:18:04 +10:30

103 lines
2.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"math/rand/v2"
"testing"
"gonum.org/v1/gonum/floats"
)
type Dgeqrfer interface {
Dgeqr2er
Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int)
}
func DgeqrfTest(t *testing.T, impl Dgeqrfer) {
const tol = 1e-12
rnd := rand.New(rand.NewPCG(1, 1))
for c, test := range []struct {
m, n, lda int
}{
{10, 5, 0},
{5, 10, 0},
{10, 10, 0},
{300, 5, 0},
{3, 500, 0},
{200, 200, 0},
{300, 200, 0},
{204, 300, 0},
{1, 3000, 0},
{3000, 1, 0},
{10, 5, 20},
{5, 10, 20},
{10, 10, 20},
{300, 5, 400},
{3, 500, 600},
{200, 200, 300},
{300, 200, 300},
{204, 300, 400},
{1, 3000, 4000},
{3000, 1, 4000},
} {
m := test.m
n := test.n
lda := test.lda
if lda == 0 {
lda = test.n
}
// Allocate m×n matrix A and fill it with random numbers.
a := make([]float64, m*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
// Store a copy of A for later comparison.
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Allocate a slice for scalar factors of elementary reflectors
// and fill it with random numbers.
k := min(m, n)
tau := make([]float64, k)
for i := range tau {
tau[i] = rnd.Float64()
}
// Compute the expected result using unblocked QR algorithm and
// store it in want.
want := make([]float64, len(a))
copy(want, a)
impl.Dgeqr2(m, n, want, lda, tau, make([]float64, n))
for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
copy(a, aCopy)
var lwork int
switch wl {
case minimumWork:
lwork = n
case mediumWork:
work := make([]float64, 1)
impl.Dgeqrf(m, n, a, lda, tau, work, -1)
lwork = int(work[0]) - 2*n
case optimumWork:
work := make([]float64, 1)
impl.Dgeqrf(m, n, a, lda, tau, work, -1)
lwork = int(work[0])
}
work := make([]float64, lwork)
// Compute the QR factorization of A.
impl.Dgeqrf(m, n, a, lda, tau, work, len(work))
// Compare the result with Dgeqr2.
if !floats.EqualApprox(want, a, tol) {
t.Errorf("Case %v, workspace %v, unexpected result.", c, wl)
}
}
}
}