Files
gonum/blas/testblas/common.go
2024-04-06 20:24:32 +10:30

723 lines
14 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2014 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testblas
import (
"math"
"math/cmplx"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/floats/scalar"
)
// throwPanic will throw unexpected panics if true, or will just report them as errors if false
const throwPanic = true
var znan = cmplx.NaN()
func dTolEqual(a, b float64) bool {
if math.IsNaN(a) && math.IsNaN(b) {
return true
}
if a == b {
return true
}
m := math.Max(math.Abs(a), math.Abs(b))
if m > 1 {
a /= m
b /= m
}
if math.Abs(a-b) < 1e-14 {
return true
}
return false
}
func dSliceTolEqual(a, b []float64) bool {
if len(a) != len(b) {
return false
}
for i := range a {
if !dTolEqual(a[i], b[i]) {
return false
}
}
return true
}
func dStridedSliceTolEqual(n int, a []float64, inca int, b []float64, incb int) bool {
ia := 0
ib := 0
if inca <= 0 {
ia = -(n - 1) * inca
}
if incb <= 0 {
ib = -(n - 1) * incb
}
for i := 0; i < n; i++ {
if !dTolEqual(a[ia], b[ib]) {
return false
}
ia += inca
ib += incb
}
return true
}
func dSliceEqual(a, b []float64) bool {
if len(a) != len(b) {
return false
}
for i := range a {
if !dTolEqual(a[i], b[i]) {
return false
}
}
return true
}
func dCopyTwoTmp(x, xTmp, y, yTmp []float64) {
if len(x) != len(xTmp) {
panic("x size mismatch")
}
if len(y) != len(yTmp) {
panic("y size mismatch")
}
copy(xTmp, x)
copy(yTmp, y)
}
// returns true if the function panics
func panics(f func()) (b bool) {
defer func() {
err := recover()
if err != nil {
b = true
}
}()
f()
return
}
func testpanics(f func(), name string, t *testing.T) {
b := panics(f)
if !b {
t.Errorf("%v should panic and does not", name)
}
}
func sliceOfSliceCopy(a [][]float64) [][]float64 {
n := make([][]float64, len(a))
for i := range a {
n[i] = make([]float64, len(a[i]))
copy(n[i], a[i])
}
return n
}
func sliceCopy(a []float64) []float64 {
n := make([]float64, len(a))
copy(n, a)
return n
}
func flatten(a [][]float64) []float64 {
if len(a) == 0 {
return nil
}
m := len(a)
n := len(a[0])
s := make([]float64, m*n)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
s[i*n+j] = a[i][j]
}
}
return s
}
func unflatten(a []float64, m, n int) [][]float64 {
s := make([][]float64, m)
for i := 0; i < m; i++ {
s[i] = make([]float64, n)
for j := 0; j < n; j++ {
s[i][j] = a[i*n+j]
}
}
return s
}
// flattenTriangular turns the upper or lower triangle of a dense slice of slice
// into a single slice with packed storage. a must be a square matrix.
func flattenTriangular(a [][]float64, ul blas.Uplo) []float64 {
m := len(a)
aFlat := make([]float64, m*(m+1)/2)
var k int
if ul == blas.Upper {
for i := 0; i < m; i++ {
k += copy(aFlat[k:], a[i][i:])
}
return aFlat
}
for i := 0; i < m; i++ {
k += copy(aFlat[k:], a[i][:i+1])
}
return aFlat
}
// flattenBanded turns a dense banded slice of slice into the compact banded matrix format
func flattenBanded(a [][]float64, ku, kl int) []float64 {
m := len(a)
n := len(a[0])
if ku < 0 || kl < 0 {
panic("testblas: negative band length")
}
nRows := m
nCols := (ku + kl + 1)
aflat := make([]float64, nRows*nCols)
for i := range aflat {
aflat[i] = math.NaN()
}
// loop over the rows, and then the bands
// elements in the ith row stay in the ith row
// order in bands is kept
for i := 0; i < nRows; i++ {
min := -kl
if i-kl < 0 {
min = -i
}
max := ku
if i+ku >= n {
max = n - i - 1
}
for j := min; j <= max; j++ {
col := kl + j
aflat[i*nCols+col] = a[i][i+j]
}
}
return aflat
}
// makeIncremented takes a float64 slice with inc == 1 and makes an incremented version
// and adds extra values on the end
func makeIncremented(x []float64, inc int, extra int) []float64 {
if inc == 0 {
panic("zero inc")
}
absinc := inc
if absinc < 0 {
absinc = -inc
}
xcopy := make([]float64, len(x))
if inc > 0 {
copy(xcopy, x)
} else {
for i := 0; i < len(x); i++ {
xcopy[i] = x[len(x)-i-1]
}
}
// don't use NaN because it makes comparison hard
// Do use a weird unique value for easier debugging
counter := 100.0
var xnew []float64
for i, v := range xcopy {
xnew = append(xnew, v)
if i != len(x)-1 {
for j := 0; j < absinc-1; j++ {
xnew = append(xnew, counter)
counter++
}
}
}
for i := 0; i < extra; i++ {
xnew = append(xnew, counter)
counter++
}
return xnew
}
// makeIncremented32 takes a float32 slice with inc == 1 and makes an incremented version
// and adds extra values on the end
func makeIncremented32(x []float32, inc int, extra int) []float32 {
if inc == 0 {
panic("zero inc")
}
absinc := inc
if absinc < 0 {
absinc = -inc
}
xcopy := make([]float32, len(x))
if inc > 0 {
copy(xcopy, x)
} else {
for i := 0; i < len(x); i++ {
xcopy[i] = x[len(x)-i-1]
}
}
// don't use NaN because it makes comparison hard
// Do use a weird unique value for easier debugging
var counter float32 = 100.0
var xnew []float32
for i, v := range xcopy {
xnew = append(xnew, v)
if i != len(x)-1 {
for j := 0; j < absinc-1; j++ {
xnew = append(xnew, counter)
counter++
}
}
}
for i := 0; i < extra; i++ {
xnew = append(xnew, counter)
counter++
}
return xnew
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
func allPairs(x, y []int) [][2]int {
var p [][2]int
for _, v0 := range x {
for _, v1 := range y {
p = append(p, [2]int{v0, v1})
}
}
return p
}
func sameFloat64(a, b float64) bool {
return a == b || math.IsNaN(a) && math.IsNaN(b)
}
func sameComplex128(x, y complex128) bool {
return sameFloat64(real(x), real(y)) && sameFloat64(imag(x), imag(y))
}
func zsame(x, y []complex128) bool {
if len(x) != len(y) {
return false
}
for i, v := range x {
w := y[i]
if !sameComplex128(v, w) {
return false
}
}
return true
}
// zSameAtNonstrided returns whether elements at non-stride positions of vectors
// x and y are same.
func zSameAtNonstrided(x, y []complex128, inc int) bool {
if len(x) != len(y) {
return false
}
if inc < 0 {
inc = -inc
}
for i, v := range x {
if i%inc == 0 {
continue
}
w := y[i]
if !sameComplex128(v, w) {
return false
}
}
return true
}
// zEqualApproxAtStrided returns whether elements at stride positions of vectors
// x and y are approximately equal within tol.
func zEqualApproxAtStrided(x, y []complex128, inc int, tol float64) bool {
if len(x) != len(y) {
return false
}
if inc < 0 {
inc = -inc
}
for i := 0; i < len(x); i += inc {
v := x[i]
w := y[i]
if !(cmplx.Abs(v-w) <= tol) {
return false
}
}
return true
}
func makeZVector(data []complex128, inc int) []complex128 {
if inc == 0 {
panic("bad test")
}
if len(data) == 0 {
return nil
}
inc = abs(inc)
x := make([]complex128, (len(data)-1)*inc+1)
for i := range x {
x[i] = znan
}
for i, v := range data {
x[i*inc] = v
}
return x
}
func makeZGeneral(data []complex128, m, n int, ld int) []complex128 {
if m < 0 || n < 0 {
panic("bad test")
}
if data != nil && len(data) != m*n {
panic("bad test")
}
if ld < max(1, n) {
panic("bad test")
}
if m == 0 || n == 0 {
return nil
}
a := make([]complex128, (m-1)*ld+n)
for i := range a {
a[i] = znan
}
if data != nil {
for i := 0; i < m; i++ {
copy(a[i*ld:i*ld+n], data[i*n:i*n+n])
}
}
return a
}
// zPack returns the uplo triangle of an n×n matrix A in packed format.
func zPack(uplo blas.Uplo, n int, a []complex128, lda int) []complex128 {
if n == 0 {
return nil
}
ap := make([]complex128, n*(n+1)/2)
var ii int
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
ap[ii] = a[i*lda+j]
ii++
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
ap[ii] = a[i*lda+j]
ii++
}
}
}
return ap
}
// zUnpackAsHermitian returns an n×n general Hermitian matrix (with stride n)
// whose packed uplo triangle is stored on entry in ap.
func zUnpackAsHermitian(uplo blas.Uplo, n int, ap []complex128) []complex128 {
if n == 0 {
return nil
}
a := make([]complex128, n*n)
lda := n
var ii int
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
a[i*lda+j] = ap[ii]
if i != j {
a[j*lda+i] = cmplx.Conj(ap[ii])
}
ii++
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
a[i*lda+j] = ap[ii]
if i != j {
a[j*lda+i] = cmplx.Conj(ap[ii])
}
ii++
}
}
}
return a
}
// zPackBand returns the (kL+1+kU) band of an m×n general matrix A in band
// matrix format with ldab stride. Out-of-range elements are filled with NaN.
func zPackBand(kL, kU, ldab int, m, n int, a []complex128, lda int) []complex128 {
if m == 0 || n == 0 {
return nil
}
nRow := min(m, n+kL)
ab := make([]complex128, (nRow-1)*ldab+kL+1+kU)
for i := range ab {
ab[i] = znan
}
for i := 0; i < m; i++ {
off := max(0, kL-i)
var k int
for j := max(0, i-kL); j < min(n, i+kU+1); j++ {
ab[i*ldab+off+k] = a[i*lda+j]
k++
}
}
return ab
}
// zPackTriBand returns in band matrix format the (k+1) band in the uplo
// triangle of an n×n matrix A. Out-of-range elements are filled with NaN.
func zPackTriBand(k, ldab int, uplo blas.Uplo, n int, a []complex128, lda int) []complex128 {
if n == 0 {
return nil
}
ab := make([]complex128, (n-1)*ldab+k+1)
for i := range ab {
ab[i] = znan
}
if uplo == blas.Upper {
for i := 0; i < n; i++ {
var k int
for j := i; j < min(n, i+k+1); j++ {
ab[i*ldab+k] = a[i*lda+j]
k++
}
}
} else {
for i := 0; i < n; i++ {
off := max(0, k-i)
var kk int
for j := max(0, i-k); j <= i; j++ {
ab[i*ldab+off+kk] = a[i*lda+j]
kk++
}
}
}
return ab
}
// zEqualApprox returns whether the slices a and b are approximately equal.
func zEqualApprox(a, b []complex128, tol float64) bool {
if len(a) != len(b) {
panic("mismatched slice length")
}
for i, ai := range a {
if !scalar.EqualWithinAbs(cmplx.Abs(ai), cmplx.Abs(b[i]), tol) {
return false
}
}
return true
}
// rndComplex128 returns a complex128 with random components.
func rndComplex128(rnd *rand.Rand) complex128 {
return complex(rnd.NormFloat64(), rnd.NormFloat64())
}
// zmm returns the result of one of the matrix-matrix operations
//
// alpha * op(A) * op(B) + beta * C
//
// where op(X) is one of
//
// op(X) = X or op(X) = Xᵀ or op(X) = Xᴴ,
//
// alpha and beta are scalars, and A, B and C are matrices, with op(A) an m×k matrix,
// op(B) a k×n matrix and C an m×n matrix.
//
// The returned slice is newly allocated, has the same length as c and the
// matrix it represents has the stride ldc. Out-of-range elements are equal to
// those of C to ease comparison of results from BLAS Level 3 functions.
func zmm(tA, tB blas.Transpose, m, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta complex128, c []complex128, ldc int) []complex128 {
r := make([]complex128, len(c))
copy(r, c)
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
r[i*ldc+j] = 0
}
}
switch tA {
case blas.NoTrans:
switch tB {
case blas.NoTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[i*lda+l] * b[l*ldb+j]
}
}
}
case blas.Trans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[i*lda+l] * b[j*ldb+l]
}
}
}
case blas.ConjTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[i*lda+l] * cmplx.Conj(b[j*ldb+l])
}
}
}
}
case blas.Trans:
switch tB {
case blas.NoTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[l*lda+i] * b[l*ldb+j]
}
}
}
case blas.Trans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[l*lda+i] * b[j*ldb+l]
}
}
}
case blas.ConjTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += a[l*lda+i] * cmplx.Conj(b[j*ldb+l])
}
}
}
}
case blas.ConjTrans:
switch tB {
case blas.NoTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += cmplx.Conj(a[l*lda+i]) * b[l*ldb+j]
}
}
}
case blas.Trans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += cmplx.Conj(a[l*lda+i]) * b[j*ldb+l]
}
}
}
case blas.ConjTrans:
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
for l := 0; l < k; l++ {
r[i*ldc+j] += cmplx.Conj(a[l*lda+i]) * cmplx.Conj(b[j*ldb+l])
}
}
}
}
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
r[i*ldc+j] = alpha * r[i*ldc+j]
if beta != 0 {
r[i*ldc+j] += beta * c[i*ldc+j]
}
}
}
return r
}
// transString returns a string representation of blas.Transpose.
func transString(t blas.Transpose) string {
switch t {
case blas.NoTrans:
return "NoTrans"
case blas.Trans:
return "Trans"
case blas.ConjTrans:
return "ConjTrans"
}
return "unknown trans"
}
// uploString returns a string representation of blas.Uplo.
func uploString(uplo blas.Uplo) string {
switch uplo {
case blas.Lower:
return "Lower"
case blas.Upper:
return "Upper"
}
return "unknown uplo"
}
// sideString returns a string representation of blas.Side.
func sideString(side blas.Side) string {
switch side {
case blas.Left:
return "Left"
case blas.Right:
return "Right"
}
return "unknown side"
}
// diagString returns a string representation of blas.Diag.
func diagString(diag blas.Diag) string {
switch diag {
case blas.Unit:
return "Unit"
case blas.NonUnit:
return "NonUnit"
}
return "unknown diag"
}
// zSameLowerTri returns whether n×n matrices A and B are same under the diagonal.
func zSameLowerTri(n int, a []complex128, lda int, b []complex128, ldb int) bool {
for i := 1; i < n; i++ {
for j := 0; j < i; j++ {
aij := a[i*lda+j]
bij := b[i*ldb+j]
if !sameComplex128(aij, bij) {
return false
}
}
}
return true
}
// zSameUpperTri returns whether n×n matrices A and B are same above the diagonal.
func zSameUpperTri(n int, a []complex128, lda int, b []complex128, ldb int) bool {
for i := 0; i < n-1; i++ {
for j := i + 1; j < n; j++ {
aij := a[i*lda+j]
bij := b[i*ldb+j]
if !sameComplex128(aij, bij) {
return false
}
}
}
return true
}