mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 15:47:01 +08:00
217 lines
5.4 KiB
Go
217 lines
5.4 KiB
Go
// Copyright ©2017 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package mat_test
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
func ExampleDense_Add() {
|
|
// Initialize two matrices, a and b.
|
|
a := mat.NewDense(2, 2, []float64{1, 0, 1, 0})
|
|
b := mat.NewDense(2, 2, []float64{0, 1, 0, 1})
|
|
|
|
// Add a and b, placing the result into c.
|
|
// ...Notice that the size is automatically adjusted when the receiver has zero size.
|
|
var c mat.Dense
|
|
c.Add(a, b)
|
|
|
|
// Print the result using the formatter.
|
|
fc := mat.Formatted(&c, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nc = %v\n\n", fc)
|
|
// Output:
|
|
// Result:
|
|
// c = ⎡1 1⎤
|
|
// ⎣1 1⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_Sub() {
|
|
// Initialize two matrices, a and b.
|
|
a := mat.NewDense(2, 2, []float64{1, 1, 1, 1})
|
|
b := mat.NewDense(2, 2, []float64{1, 0, 0, 1})
|
|
|
|
// Subtract b from a, placing the result into a.
|
|
a.Sub(a, b)
|
|
|
|
// Print the result using the formatter.
|
|
fa := mat.Formatted(a, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\na = %v\n\n", fa)
|
|
// Output:
|
|
// Result:
|
|
// a = ⎡0 1⎤
|
|
// ⎣1 0⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_MulElem() {
|
|
// Initialize two matrices, a and b.
|
|
a := mat.NewDense(2, 2, []float64{1, 2, 3, 4})
|
|
b := mat.NewDense(2, 2, []float64{1, 2, 3, 4})
|
|
|
|
// Multiply the elements of a and b, placing the result into a.
|
|
a.MulElem(a, b)
|
|
|
|
// Print the result using the formatter.
|
|
fa := mat.Formatted(a, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\na = %v\n\n", fa)
|
|
// Output:
|
|
// Result:
|
|
// a = ⎡1 4⎤
|
|
// ⎣9 16⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_DivElem() {
|
|
// Initialize two matrices, a and b.
|
|
a := mat.NewDense(2, 2, []float64{5, 10, 15, 20})
|
|
b := mat.NewDense(2, 2, []float64{5, 5, 5, 5})
|
|
|
|
// Divide the elements of a by b, placing the result into a.
|
|
a.DivElem(a, b)
|
|
|
|
// Print the result using the formatter.
|
|
fa := mat.Formatted(a, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\na = %v\n\n", fa)
|
|
// Output:
|
|
// Result:
|
|
// a = ⎡1 2⎤
|
|
// ⎣3 4⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_Inverse() {
|
|
// Initialize two matrices, a and ia.
|
|
a := mat.NewDense(2, 2, []float64{4, 0, 0, 4})
|
|
var ia mat.Dense
|
|
|
|
// Take the inverse of a and place the result in ia.
|
|
ia.Inverse(a)
|
|
|
|
// Print the result using the formatter.
|
|
fa := mat.Formatted(&ia, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nia = %.2g\n\n", fa)
|
|
|
|
// Confirm that A * A^-1 = I
|
|
var r mat.Dense
|
|
r.Mul(a, &ia)
|
|
fr := mat.Formatted(&r, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nr = %v\n\n", fr)
|
|
|
|
// The Inverse operation, however, is numerically unstable, and should typically be avoided.
|
|
// For example, a common need is to find x = A^-1 * b. In this case, the SolveVec method of VecDense
|
|
// (if b is a Vector) or Solve method of Dense (if b is a matrix) should used instead of computing
|
|
// the Inverse of A.
|
|
b := mat.NewDense(2, 2, []float64{2, 0, 0, 2})
|
|
var x mat.Dense
|
|
x.Solve(a, b)
|
|
|
|
// Print the result using the formatter.
|
|
fx := mat.Formatted(&x, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nx = %v\n\n", fx)
|
|
|
|
// Output:
|
|
// Result:
|
|
// ia = ⎡0.25 -0⎤
|
|
// ⎣ 0 0.25⎦
|
|
//
|
|
// Result:
|
|
// r = ⎡1 0⎤
|
|
// ⎣0 1⎦
|
|
//
|
|
// Result:
|
|
// x = ⎡0.5 0⎤
|
|
// ⎣ 0 0.5⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_Mul() {
|
|
// Initialize two matrices, a and b.
|
|
a := mat.NewDense(2, 2, []float64{4, 0, 0, 4})
|
|
b := mat.NewDense(2, 3, []float64{4, 0, 0, 0, 0, 4})
|
|
|
|
// Take the matrix product of a and b and place the result in c.
|
|
var c mat.Dense
|
|
c.Mul(a, b)
|
|
|
|
// Print the result using the formatter.
|
|
fc := mat.Formatted(&c, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nc = %v\n\n", fc)
|
|
// Output:
|
|
// Result:
|
|
// c = ⎡16 0 0⎤
|
|
// ⎣ 0 0 16⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_Exp() {
|
|
// Initialize a matrix a with some data.
|
|
a := mat.NewDense(2, 2, []float64{1, 0, 0, 1})
|
|
|
|
// Take the exponential of the matrix and place the result in m.
|
|
var m mat.Dense
|
|
m.Exp(a)
|
|
|
|
// Print the result using the formatter.
|
|
fm := mat.Formatted(&m, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nm = %4.2f\n\n", fm)
|
|
// Output:
|
|
// Result:
|
|
// m = ⎡2.72 0.00⎤
|
|
// ⎣0.00 2.72⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_Pow() {
|
|
// Initialize a matrix with some data.
|
|
a := mat.NewDense(2, 2, []float64{4, 4, 4, 4})
|
|
|
|
// Take the second power of matrix a and place the result in m.
|
|
var m mat.Dense
|
|
m.Pow(a, 2)
|
|
|
|
// Print the result using the formatter.
|
|
fm := mat.Formatted(&m, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nm = %v\n\n", fm)
|
|
|
|
// Take the zeroth power of matrix a and place the result in n.
|
|
// We expect an identity matrix of the same size as matrix a.
|
|
var n mat.Dense
|
|
n.Pow(a, 0)
|
|
|
|
// Print the result using the formatter.
|
|
fn := mat.Formatted(&n, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nn = %v\n\n", fn)
|
|
// Output:
|
|
// Result:
|
|
// m = ⎡32 32⎤
|
|
// ⎣32 32⎦
|
|
//
|
|
// Result:
|
|
// n = ⎡1 0⎤
|
|
// ⎣0 1⎦
|
|
//
|
|
}
|
|
|
|
func ExampleDense_Scale() {
|
|
// Initialize a matrix with some data.
|
|
a := mat.NewDense(2, 2, []float64{4, 4, 4, 4})
|
|
|
|
// Scale the matrix by a factor of 0.25 and place the result in m.
|
|
var m mat.Dense
|
|
m.Scale(0.25, a)
|
|
|
|
// Print the result using the formatter.
|
|
fm := mat.Formatted(&m, mat.Prefix(" "), mat.Squeeze())
|
|
fmt.Printf("Result:\nm = %4.3f\n\n", fm)
|
|
// Output:
|
|
// Result:
|
|
// m = ⎡1.000 1.000⎤
|
|
// ⎣1.000 1.000⎦
|
|
//
|
|
}
|