Files
gonum/lapack/testlapack/dlatrd.go
Dan Kortschak 17ea55aedb blas,lapack: clean up docs and comments
Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g

Some additional manual editing of odd formatting.
2019-09-06 20:02:29 +09:30

273 lines
6.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"math"
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
type Dlatrder interface {
Dlatrd(uplo blas.Uplo, n, nb int, a []float64, lda int, e, tau, w []float64, ldw int)
}
func DlatrdTest(t *testing.T, impl Dlatrder) {
rnd := rand.New(rand.NewSource(1))
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
for _, test := range []struct {
n, nb, lda, ldw int
}{
{5, 2, 0, 0},
{5, 5, 0, 0},
{5, 3, 10, 11},
{5, 5, 10, 11},
} {
n := test.n
nb := test.nb
lda := test.lda
if lda == 0 {
lda = n
}
ldw := test.ldw
if ldw == 0 {
ldw = nb
}
// Allocate n×n matrix A and fill it with random numbers.
a := make([]float64, n*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
// Allocate output slices and matrix W and fill them
// with NaN. All their elements should be overwritten by
// Dlatrd.
e := make([]float64, n-1)
for i := range e {
e[i] = math.NaN()
}
tau := make([]float64, n-1)
for i := range tau {
tau[i] = math.NaN()
}
w := make([]float64, n*ldw)
for i := range w {
w[i] = math.NaN()
}
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Reduce nb rows and columns of the symmetric matrix A
// defined by uplo triangle to symmetric tridiagonal
// form.
impl.Dlatrd(uplo, n, nb, a, lda, e, tau, w, ldw)
// Construct Q from elementary reflectors stored in
// columns of A.
q := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
// Initialize Q to the identity matrix.
for i := 0; i < n; i++ {
q.Data[i*q.Stride+i] = 1
}
if uplo == blas.Upper {
for i := n - 1; i >= n-nb; i-- {
if i == 0 {
continue
}
// Extract the elementary reflector v from A.
v := blas64.Vector{
Inc: 1,
Data: make([]float64, n),
}
for j := 0; j < i-1; j++ {
v.Data[j] = a[j*lda+i]
}
v.Data[i-1] = 1
// Compute H = I - tau[i-1] * v * vᵀ.
h := blas64.General{
Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n),
}
for j := 0; j < n; j++ {
h.Data[j*n+j] = 1
}
blas64.Ger(-tau[i-1], v, v, h)
// Update Q <- Q * H.
qTmp := blas64.General{
Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n),
}
copy(qTmp.Data, q.Data)
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qTmp, h, 0, q)
}
} else {
for i := 0; i < nb; i++ {
if i == n-1 {
continue
}
// Extract the elementary reflector v from A.
v := blas64.Vector{
Inc: 1,
Data: make([]float64, n),
}
v.Data[i+1] = 1
for j := i + 2; j < n; j++ {
v.Data[j] = a[j*lda+i]
}
// Compute H = I - tau[i] * v * vᵀ.
h := blas64.General{
Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n),
}
for j := 0; j < n; j++ {
h.Data[j*n+j] = 1
}
blas64.Ger(-tau[i], v, v, h)
// Update Q <- Q * H.
qTmp := blas64.General{
Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n),
}
copy(qTmp.Data, q.Data)
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, qTmp, h, 0, q)
}
}
errStr := fmt.Sprintf("isUpper = %v, n = %v, nb = %v", uplo == blas.Upper, n, nb)
if !isOrthogonal(q) {
t.Errorf("Case %v: Q not orthogonal", errStr)
}
aGen := genFromSym(blas64.Symmetric{N: n, Stride: lda, Uplo: uplo, Data: aCopy})
if !dlatrdCheckDecomposition(t, uplo, n, nb, e, a, lda, aGen, q) {
t.Errorf("Case %v: Decomposition mismatch", errStr)
}
}
}
}
// dlatrdCheckDecomposition checks that the first nb rows have been successfully
// reduced.
func dlatrdCheckDecomposition(t *testing.T, uplo blas.Uplo, n, nb int, e, a []float64, lda int, aGen, q blas64.General) bool {
// Compute ans = Qᵀ * A * Q.
// ans should be a tridiagonal matrix in the first or last nb rows and
// columns, depending on uplo.
tmp := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
ans := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, aGen, 0, tmp)
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, tmp, q, 0, ans)
// Compare the output of Dlatrd (stored in a and e) with the explicit
// reduction to tridiagonal matrix Qᵀ * A * Q (stored in ans).
if uplo == blas.Upper {
for i := n - nb; i < n; i++ {
for j := 0; j < n; j++ {
v := ans.Data[i*ans.Stride+j]
switch {
case i == j:
// Diagonal elements of a and ans should match.
if math.Abs(v-a[i*lda+j]) > 1e-10 {
return false
}
case i == j-1:
// Superdiagonal elements in a should be 1.
if math.Abs(a[i*lda+j]-1) > 1e-10 {
return false
}
// Superdiagonal elements of ans should match e.
if math.Abs(v-e[i]) > 1e-10 {
return false
}
case i == j+1:
default:
// All other elements should be 0.
if math.Abs(v) > 1e-10 {
return false
}
}
}
}
} else {
for i := 0; i < nb; i++ {
for j := 0; j < n; j++ {
v := ans.Data[i*ans.Stride+j]
switch {
case i == j:
// Diagonal elements of a and ans should match.
if math.Abs(v-a[i*lda+j]) > 1e-10 {
return false
}
case i == j-1:
case i == j+1:
// Subdiagonal elements in a should be 1.
if math.Abs(a[i*lda+j]-1) > 1e-10 {
return false
}
// Subdiagonal elements of ans should match e.
if math.Abs(v-e[i-1]) > 1e-10 {
return false
}
default:
// All other elements should be 0.
if math.Abs(v) > 1e-10 {
return false
}
}
}
}
}
return true
}
// genFromSym constructs a (symmetric) general matrix from the data in the
// symmetric.
// TODO(btracey): Replace other constructions of this with a call to this function.
func genFromSym(a blas64.Symmetric) blas64.General {
n := a.N
lda := a.Stride
uplo := a.Uplo
b := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
v := a.Data[i*lda+j]
if uplo == blas.Lower {
v = a.Data[j*lda+i]
}
b.Data[i*n+j] = v
b.Data[j*n+i] = v
}
}
return b
}