mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00

* optimize: Refactor gradient convergence and remove DefaultSettings The current API design makes it easy to make a mistake in not using the DefaultSettings. This change makes the zero value of Settings do the 'right thing'. The remaining setting that is used by the DefaultSettings is to change the behavior of the GradientTolerance. This was necessary because gradient-based Local methods (BFGS, LBFGS, CG, etc.) typically _define_ convergence by the value of the gradient, while Global methods (CMAES, GuessAndCheck) are defined by _not_ converging when the gradient is small. The problem is to have two completely different default behaviors without knowing the Method. The solution is to treat a very small value of the gradient as a method-based convergence, in the same way that a small spread of data is a convergence of CMAES. Thus, the default behavior, from the perspective of Settings, is never to converge based on the gradient, but all of the Local methods will converge when a value close to the minimum is found. This default value is set to a very small value, such that users should not want a smaller value. A user can thus still set a (more reasonable) convergence value through settings. Fixes 677.
1335 lines
31 KiB
Go
1335 lines
31 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package optimize
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"testing"
|
|
|
|
"gonum.org/v1/gonum/floats"
|
|
"gonum.org/v1/gonum/mat"
|
|
"gonum.org/v1/gonum/optimize/functions"
|
|
)
|
|
|
|
type unconstrainedTest struct {
|
|
// name is the name of the test.
|
|
name string
|
|
// p is the optimization problem to be solved.
|
|
p Problem
|
|
// x is the initial guess.
|
|
x []float64
|
|
// gradTol is the absolute gradient tolerance for the test. If gradTol == 0,
|
|
// the default value of 1e-12 will be used.
|
|
gradTol float64
|
|
// fAbsTol is the absolute function convergence for the test. If fAbsTol == 0,
|
|
// the default value of 1e-12 will be used.
|
|
fAbsTol float64
|
|
// fIter is the number of iterations for function convergence. If fIter == 0,
|
|
// the default value of 20 will be used.
|
|
fIter int
|
|
// long indicates that the test takes long time to finish and will be
|
|
// excluded if testing.Short returns true.
|
|
long bool
|
|
}
|
|
|
|
func (t unconstrainedTest) String() string {
|
|
dim := len(t.x)
|
|
if dim <= 10 {
|
|
// Print the initial X only for small-dimensional problems.
|
|
return fmt.Sprintf("F: %v\nDim: %v\nInitial X: %v\nGradientThreshold: %v",
|
|
t.name, dim, t.x, t.gradTol)
|
|
}
|
|
return fmt.Sprintf("F: %v\nDim: %v\nGradientThreshold: %v",
|
|
t.name, dim, t.gradTol)
|
|
}
|
|
|
|
var gradFreeTests = []unconstrainedTest{
|
|
{
|
|
name: "Beale",
|
|
p: Problem{
|
|
Func: functions.Beale{}.Func,
|
|
},
|
|
x: []float64{1, 1},
|
|
},
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
},
|
|
x: []float64{1, 2, 1, 1, 1, 1},
|
|
},
|
|
{
|
|
name: "BrownAndDennis",
|
|
p: Problem{
|
|
Func: functions.BrownAndDennis{}.Func,
|
|
},
|
|
x: []float64{25, 5, -5, -1},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
},
|
|
x: []float64{-10, 10},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
},
|
|
x: []float64{-5, 4, 16, 3},
|
|
},
|
|
}
|
|
|
|
var gradientDescentTests = []unconstrainedTest{
|
|
{
|
|
name: "Beale",
|
|
p: Problem{
|
|
Func: functions.Beale{}.Func,
|
|
Grad: functions.Beale{}.Grad,
|
|
},
|
|
x: []float64{1, 1},
|
|
},
|
|
{
|
|
name: "Beale",
|
|
p: Problem{
|
|
Func: functions.Beale{}.Func,
|
|
Grad: functions.Beale{}.Grad,
|
|
},
|
|
x: []float64{3.00001, 0.50001},
|
|
},
|
|
{
|
|
name: "BiggsEXP2",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP2{}.Func,
|
|
Grad: functions.BiggsEXP2{}.Grad,
|
|
},
|
|
x: []float64{1, 2},
|
|
},
|
|
{
|
|
name: "BiggsEXP2",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP2{}.Func,
|
|
Grad: functions.BiggsEXP2{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001},
|
|
},
|
|
{
|
|
name: "BiggsEXP3",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP3{}.Func,
|
|
Grad: functions.BiggsEXP3{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1},
|
|
},
|
|
{
|
|
name: "BiggsEXP3",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP3{}.Func,
|
|
Grad: functions.BiggsEXP3{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 3.00001},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{-1.2, 1},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 1.00001},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{-1.2, 1, -1.2},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{-120, 100, 50},
|
|
long: true,
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1, 1, 1},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 1.00001, 1.00001},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "Gaussian",
|
|
p: Problem{
|
|
Func: functions.Gaussian{}.Func,
|
|
Grad: functions.Gaussian{}.Grad,
|
|
},
|
|
x: []float64{0.4, 1, 0},
|
|
gradTol: 1e-9,
|
|
},
|
|
{
|
|
name: "Gaussian",
|
|
p: Problem{
|
|
Func: functions.Gaussian{}.Func,
|
|
Grad: functions.Gaussian{}.Grad,
|
|
},
|
|
x: []float64{0.3989561, 1.0000191, 0},
|
|
gradTol: 1e-9,
|
|
},
|
|
{
|
|
name: "HelicalValley",
|
|
p: Problem{
|
|
Func: functions.HelicalValley{}.Func,
|
|
Grad: functions.HelicalValley{}.Grad,
|
|
},
|
|
x: []float64{-1, 0, 0},
|
|
},
|
|
{
|
|
name: "HelicalValley",
|
|
p: Problem{
|
|
Func: functions.HelicalValley{}.Func,
|
|
Grad: functions.HelicalValley{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 0.00001, 0.00001},
|
|
},
|
|
{
|
|
name: "Trigonometric",
|
|
p: Problem{
|
|
Func: functions.Trigonometric{}.Func,
|
|
Grad: functions.Trigonometric{}.Grad,
|
|
},
|
|
x: []float64{0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1},
|
|
gradTol: 1e-7,
|
|
},
|
|
{
|
|
name: "Trigonometric",
|
|
p: Problem{
|
|
Func: functions.Trigonometric{}.Func,
|
|
Grad: functions.Trigonometric{}.Grad,
|
|
},
|
|
x: []float64{0.042964, 0.043976, 0.045093, 0.046338, 0.047744,
|
|
0.049354, 0.051237, 0.195209, 0.164977, 0.060148},
|
|
gradTol: 1e-8,
|
|
},
|
|
newVariablyDimensioned(2, 0),
|
|
{
|
|
name: "VariablyDimensioned",
|
|
p: Problem{
|
|
Func: functions.VariablyDimensioned{}.Func,
|
|
Grad: functions.VariablyDimensioned{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 1.00001},
|
|
},
|
|
newVariablyDimensioned(10, 0),
|
|
{
|
|
name: "VariablyDimensioned",
|
|
p: Problem{
|
|
Func: functions.VariablyDimensioned{}.Func,
|
|
Grad: functions.VariablyDimensioned{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 1.00001, 1.00001, 1.00001, 1.00001, 1.00001, 1.00001, 1.00001, 1.00001, 1.00001},
|
|
},
|
|
}
|
|
|
|
var cgTests = []unconstrainedTest{
|
|
{
|
|
name: "BiggsEXP4",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP4{}.Func,
|
|
Grad: functions.BiggsEXP4{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1},
|
|
},
|
|
{
|
|
name: "BiggsEXP4",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP4{}.Func,
|
|
Grad: functions.BiggsEXP4{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001},
|
|
},
|
|
{
|
|
name: "BiggsEXP5",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP5{}.Func,
|
|
Grad: functions.BiggsEXP5{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1, 1},
|
|
gradTol: 1e-7,
|
|
},
|
|
{
|
|
name: "BiggsEXP5",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP5{}.Func,
|
|
Grad: functions.BiggsEXP5{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001, 4.00001},
|
|
},
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1, 1, 1},
|
|
gradTol: 1e-7,
|
|
},
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001, 4.00001, 3.00001},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "Box3D",
|
|
p: Problem{
|
|
Func: functions.Box3D{}.Func,
|
|
Grad: functions.Box3D{}.Grad,
|
|
},
|
|
x: []float64{0, 10, 20},
|
|
},
|
|
{
|
|
name: "Box3D",
|
|
p: Problem{
|
|
Func: functions.Box3D{}.Func,
|
|
Grad: functions.Box3D{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001},
|
|
},
|
|
{
|
|
name: "Box3D",
|
|
p: Problem{
|
|
Func: functions.Box3D{}.Func,
|
|
Grad: functions.Box3D{}.Grad,
|
|
},
|
|
x: []float64{100.00001, 100.00001, 0.00001},
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{3, -1, 0, 3},
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{0.00001, 0.00001, 0.00001, 0.00001},
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{3, -1, 0, 3, 3, -1, 0, 3},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{-1.2, 1, -1.2, 1},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1e4, 1e4},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 1.00001, 1.00001, 1.00001},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "PenaltyI",
|
|
p: Problem{
|
|
Func: functions.PenaltyI{}.Func,
|
|
Grad: functions.PenaltyI{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
|
gradTol: 1e-9,
|
|
},
|
|
{
|
|
name: "PenaltyI",
|
|
p: Problem{
|
|
Func: functions.PenaltyI{}.Func,
|
|
Grad: functions.PenaltyI{}.Grad,
|
|
},
|
|
x: []float64{0.250007, 0.250007, 0.250007, 0.250007},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "PenaltyI",
|
|
p: Problem{
|
|
Func: functions.PenaltyI{}.Func,
|
|
Grad: functions.PenaltyI{}.Grad,
|
|
},
|
|
x: []float64{0.1581, 0.1581, 0.1581, 0.1581, 0.1581, 0.1581,
|
|
0.1581, 0.1581, 0.1581, 0.1581},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "PenaltyII",
|
|
p: Problem{
|
|
Func: functions.PenaltyII{}.Func,
|
|
Grad: functions.PenaltyII{}.Grad,
|
|
},
|
|
x: []float64{0.5, 0.5, 0.5, 0.5},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "PenaltyII",
|
|
p: Problem{
|
|
Func: functions.PenaltyII{}.Func,
|
|
Grad: functions.PenaltyII{}.Grad,
|
|
},
|
|
x: []float64{0.19999, 0.19131, 0.4801, 0.51884},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "PenaltyII",
|
|
p: Problem{
|
|
Func: functions.PenaltyII{}.Func,
|
|
Grad: functions.PenaltyII{}.Grad,
|
|
},
|
|
x: []float64{0.19998, 0.01035, 0.01960, 0.03208, 0.04993, 0.07651,
|
|
0.11862, 0.19214, 0.34732, 0.36916},
|
|
gradTol: 1e-6,
|
|
},
|
|
{
|
|
name: "PowellBadlyScaled",
|
|
p: Problem{
|
|
Func: functions.PowellBadlyScaled{}.Func,
|
|
Grad: functions.PowellBadlyScaled{}.Grad,
|
|
},
|
|
x: []float64{1.09815e-05, 9.10614},
|
|
gradTol: 1e-8,
|
|
},
|
|
newVariablyDimensioned(100, 1e-10),
|
|
newVariablyDimensioned(1000, 1e-7),
|
|
newVariablyDimensioned(10000, 1e-4),
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{0, 0, 0, 0, 0, 0},
|
|
gradTol: 1e-6,
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{-0.01572, 1.01243, -0.23299, 1.26043, -1.51372, 0.99299},
|
|
gradTol: 1e-6,
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
gradTol: 1e-6,
|
|
long: true,
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{-1.53070e-05, 0.99978, 0.01476, 0.14634, 1.00082,
|
|
-2.61773, 4.10440, -3.14361, 1.05262},
|
|
gradTol: 1e-6,
|
|
},
|
|
{
|
|
name: "Wood",
|
|
p: Problem{
|
|
Func: functions.Wood{}.Func,
|
|
Grad: functions.Wood{}.Grad,
|
|
},
|
|
x: []float64{-3, -1, -3, -1},
|
|
gradTol: 1e-6,
|
|
},
|
|
}
|
|
|
|
var quasiNewtonTests = []unconstrainedTest{
|
|
{
|
|
name: "BiggsEXP4",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP4{}.Func,
|
|
Grad: functions.BiggsEXP4{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1},
|
|
},
|
|
{
|
|
name: "BiggsEXP4",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP4{}.Func,
|
|
Grad: functions.BiggsEXP4{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001},
|
|
},
|
|
{
|
|
name: "BiggsEXP5",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP5{}.Func,
|
|
Grad: functions.BiggsEXP5{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1, 1},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "BiggsEXP5",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP5{}.Func,
|
|
Grad: functions.BiggsEXP5{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001, 4.00001},
|
|
},
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1, 1, 1},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001, 4.00001, 3.00001},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "Box3D",
|
|
p: Problem{
|
|
Func: functions.Box3D{}.Func,
|
|
Grad: functions.Box3D{}.Grad,
|
|
},
|
|
x: []float64{0, 10, 20},
|
|
},
|
|
{
|
|
name: "Box3D",
|
|
p: Problem{
|
|
Func: functions.Box3D{}.Func,
|
|
Grad: functions.Box3D{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001},
|
|
},
|
|
{
|
|
name: "Box3D",
|
|
p: Problem{
|
|
Func: functions.Box3D{}.Func,
|
|
Grad: functions.Box3D{}.Grad,
|
|
},
|
|
x: []float64{100.00001, 100.00001, 0.00001},
|
|
},
|
|
{
|
|
name: "BrownBadlyScaled",
|
|
p: Problem{
|
|
Func: functions.BrownBadlyScaled{}.Func,
|
|
Grad: functions.BrownBadlyScaled{}.Grad,
|
|
},
|
|
x: []float64{1, 1},
|
|
},
|
|
{
|
|
name: "BrownBadlyScaled",
|
|
p: Problem{
|
|
Func: functions.BrownBadlyScaled{}.Func,
|
|
Grad: functions.BrownBadlyScaled{}.Grad,
|
|
},
|
|
x: []float64{1.000001e6, 2.01e-6},
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{3, -1, 0, 3},
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{0.00001, 0.00001, 0.00001, 0.00001},
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{3, -1, 0, 3, 3, -1, 0, 3},
|
|
},
|
|
{
|
|
name: "ExtendedPowellSingular",
|
|
p: Problem{
|
|
Func: functions.ExtendedPowellSingular{}.Func,
|
|
Grad: functions.ExtendedPowellSingular{}.Grad,
|
|
},
|
|
x: []float64{0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001, 0.00001},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{-1.2, 1, -1.2, 1},
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 1.00001, 1.00001, 1.00001},
|
|
},
|
|
{
|
|
name: "Gaussian",
|
|
p: Problem{
|
|
Func: functions.Gaussian{}.Func,
|
|
Grad: functions.Gaussian{}.Grad,
|
|
},
|
|
x: []float64{0.4, 1, 0},
|
|
gradTol: 1e-11,
|
|
},
|
|
{
|
|
name: "GulfResearchAndDevelopment",
|
|
p: Problem{
|
|
Func: functions.GulfResearchAndDevelopment{}.Func,
|
|
Grad: functions.GulfResearchAndDevelopment{}.Grad,
|
|
},
|
|
x: []float64{5, 2.5, 0.15},
|
|
},
|
|
{
|
|
name: "GulfResearchAndDevelopment",
|
|
p: Problem{
|
|
Func: functions.GulfResearchAndDevelopment{}.Func,
|
|
Grad: functions.GulfResearchAndDevelopment{}.Grad,
|
|
},
|
|
x: []float64{50.00001, 25.00001, 1.50001},
|
|
},
|
|
{
|
|
name: "GulfResearchAndDevelopment",
|
|
p: Problem{
|
|
Func: functions.GulfResearchAndDevelopment{}.Func,
|
|
Grad: functions.GulfResearchAndDevelopment{}.Grad,
|
|
},
|
|
x: []float64{99.89529, 60.61453, 9.16124},
|
|
},
|
|
{
|
|
name: "GulfResearchAndDevelopment",
|
|
p: Problem{
|
|
Func: functions.GulfResearchAndDevelopment{}.Func,
|
|
Grad: functions.GulfResearchAndDevelopment{}.Grad,
|
|
},
|
|
x: []float64{201.66258, 60.61633, 10.22489},
|
|
},
|
|
{
|
|
name: "PenaltyI",
|
|
p: Problem{
|
|
Func: functions.PenaltyI{}.Func,
|
|
Grad: functions.PenaltyI{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
|
|
},
|
|
{
|
|
name: "PenaltyI",
|
|
p: Problem{
|
|
Func: functions.PenaltyI{}.Func,
|
|
Grad: functions.PenaltyI{}.Grad,
|
|
},
|
|
x: []float64{0.250007, 0.250007, 0.250007, 0.250007},
|
|
gradTol: 1e-9,
|
|
},
|
|
{
|
|
name: "PenaltyI",
|
|
p: Problem{
|
|
Func: functions.PenaltyI{}.Func,
|
|
Grad: functions.PenaltyI{}.Grad,
|
|
},
|
|
x: []float64{0.1581, 0.1581, 0.1581, 0.1581, 0.1581, 0.1581,
|
|
0.1581, 0.1581, 0.1581, 0.1581},
|
|
},
|
|
{
|
|
name: "PenaltyII",
|
|
p: Problem{
|
|
Func: functions.PenaltyII{}.Func,
|
|
Grad: functions.PenaltyII{}.Grad,
|
|
},
|
|
x: []float64{0.5, 0.5, 0.5, 0.5},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "PenaltyII",
|
|
p: Problem{
|
|
Func: functions.PenaltyII{}.Func,
|
|
Grad: functions.PenaltyII{}.Grad,
|
|
},
|
|
x: []float64{0.19999, 0.19131, 0.4801, 0.51884},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "PenaltyII",
|
|
p: Problem{
|
|
Func: functions.PenaltyII{}.Func,
|
|
Grad: functions.PenaltyII{}.Grad,
|
|
},
|
|
x: []float64{0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5},
|
|
gradTol: 1e-9,
|
|
},
|
|
{
|
|
name: "PenaltyII",
|
|
p: Problem{
|
|
Func: functions.PenaltyII{}.Func,
|
|
Grad: functions.PenaltyII{}.Grad,
|
|
},
|
|
x: []float64{0.19998, 0.01035, 0.01960, 0.03208, 0.04993, 0.07651,
|
|
0.11862, 0.19214, 0.34732, 0.36916},
|
|
gradTol: 1e-9,
|
|
},
|
|
{
|
|
name: "PowellBadlyScaled",
|
|
p: Problem{
|
|
Func: functions.PowellBadlyScaled{}.Func,
|
|
Grad: functions.PowellBadlyScaled{}.Grad,
|
|
},
|
|
x: []float64{0, 1},
|
|
},
|
|
{
|
|
name: "PowellBadlyScaled",
|
|
p: Problem{
|
|
Func: functions.PowellBadlyScaled{}.Func,
|
|
Grad: functions.PowellBadlyScaled{}.Grad,
|
|
},
|
|
x: []float64{1.09815e-05, 9.10614},
|
|
gradTol: 1e-10,
|
|
},
|
|
newVariablyDimensioned(100, 1e-10),
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{0, 0, 0, 0, 0, 0},
|
|
gradTol: 1e-7,
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{-0.01572, 1.01243, -0.23299, 1.26043, -1.51372, 0.99299},
|
|
gradTol: 1e-7,
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
},
|
|
x: []float64{-1.53070e-05, 0.99978, 0.01476, 0.14634, 1.00082,
|
|
-2.61773, 4.10440, -3.14361, 1.05262},
|
|
gradTol: 1e-8,
|
|
},
|
|
}
|
|
|
|
var bfgsTests = []unconstrainedTest{
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1, 1, 1},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001, 4.00001, 3.00001},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "BrownAndDennis",
|
|
p: Problem{
|
|
Func: functions.BrownAndDennis{}.Func,
|
|
Grad: functions.BrownAndDennis{}.Grad,
|
|
},
|
|
x: []float64{25, 5, -5, -1},
|
|
gradTol: 1e-5,
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1e5, 1e5},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "Gaussian",
|
|
p: Problem{
|
|
Func: functions.Gaussian{}.Func,
|
|
Grad: functions.Gaussian{}.Grad,
|
|
},
|
|
x: []float64{0.398, 1, 0},
|
|
gradTol: 1e-11,
|
|
},
|
|
{
|
|
name: "Wood",
|
|
p: Problem{
|
|
Func: functions.Wood{}.Func,
|
|
Grad: functions.Wood{}.Grad,
|
|
},
|
|
x: []float64{-3, -1, -3, -1},
|
|
},
|
|
}
|
|
|
|
var lbfgsTests = []unconstrainedTest{
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1, 2, 1, 1, 1, 1},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "BiggsEXP6",
|
|
p: Problem{
|
|
Func: functions.BiggsEXP6{}.Func,
|
|
Grad: functions.BiggsEXP6{}.Grad,
|
|
},
|
|
x: []float64{1.00001, 10.00001, 1.00001, 5.00001, 4.00001, 3.00001},
|
|
gradTol: 1e-8,
|
|
},
|
|
{
|
|
name: "ExtendedRosenbrock",
|
|
p: Problem{
|
|
Func: functions.ExtendedRosenbrock{}.Func,
|
|
Grad: functions.ExtendedRosenbrock{}.Grad,
|
|
},
|
|
x: []float64{1e7, 1e6},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "Gaussian",
|
|
p: Problem{
|
|
Func: functions.Gaussian{}.Func,
|
|
Grad: functions.Gaussian{}.Grad,
|
|
},
|
|
x: []float64{0.398, 1, 0},
|
|
gradTol: 1e-10,
|
|
},
|
|
newVariablyDimensioned(1000, 1e-8),
|
|
newVariablyDimensioned(10000, 1e-5),
|
|
}
|
|
|
|
var newtonTests = []unconstrainedTest{
|
|
{
|
|
name: "Beale",
|
|
p: Problem{
|
|
Func: functions.Beale{}.Func,
|
|
Grad: functions.Beale{}.Grad,
|
|
Hess: functions.Beale{}.Hess,
|
|
},
|
|
x: []float64{1, 1},
|
|
},
|
|
{
|
|
name: "BrownAndDennis",
|
|
p: Problem{
|
|
Func: functions.BrownAndDennis{}.Func,
|
|
Grad: functions.BrownAndDennis{}.Grad,
|
|
Hess: functions.BrownAndDennis{}.Hess,
|
|
},
|
|
x: []float64{25, 5, -5, -1},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "BrownBadlyScaled",
|
|
p: Problem{
|
|
Func: functions.BrownBadlyScaled{}.Func,
|
|
Grad: functions.BrownBadlyScaled{}.Grad,
|
|
Hess: functions.BrownBadlyScaled{}.Hess,
|
|
},
|
|
x: []float64{1, 1},
|
|
},
|
|
{
|
|
name: "PowellBadlyScaled",
|
|
p: Problem{
|
|
Func: functions.PowellBadlyScaled{}.Func,
|
|
Grad: functions.PowellBadlyScaled{}.Grad,
|
|
Hess: functions.PowellBadlyScaled{}.Hess,
|
|
},
|
|
x: []float64{0, 1},
|
|
gradTol: 1e-10,
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
Hess: functions.Watson{}.Hess,
|
|
},
|
|
x: []float64{0, 0, 0, 0, 0, 0},
|
|
},
|
|
{
|
|
name: "Watson",
|
|
p: Problem{
|
|
Func: functions.Watson{}.Func,
|
|
Grad: functions.Watson{}.Grad,
|
|
Hess: functions.Watson{}.Hess,
|
|
},
|
|
x: []float64{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
|
|
},
|
|
{
|
|
name: "Wood",
|
|
p: Problem{
|
|
Func: functions.Wood{}.Func,
|
|
Grad: functions.Wood{}.Grad,
|
|
Hess: functions.Wood{}.Hess,
|
|
},
|
|
x: []float64{-3, -1, -3, -1},
|
|
},
|
|
}
|
|
|
|
func newVariablyDimensioned(dim int, gradTol float64) unconstrainedTest {
|
|
x := make([]float64, dim)
|
|
for i := range x {
|
|
x[i] = float64(dim-i-1) / float64(dim)
|
|
}
|
|
return unconstrainedTest{
|
|
name: "VariablyDimensioned",
|
|
p: Problem{
|
|
Func: functions.VariablyDimensioned{}.Func,
|
|
Grad: functions.VariablyDimensioned{}.Grad,
|
|
},
|
|
x: x,
|
|
gradTol: gradTol,
|
|
}
|
|
}
|
|
|
|
func TestLocal(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
// Mix of functions with and without Grad method.
|
|
tests = append(tests, gradFreeTests...)
|
|
tests = append(tests, gradientDescentTests...)
|
|
testLocal(t, tests, nil)
|
|
}
|
|
|
|
func TestNelderMead(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
// Mix of functions with and without Grad method.
|
|
tests = append(tests, gradFreeTests...)
|
|
tests = append(tests, gradientDescentTests...)
|
|
testLocal(t, tests, &NelderMead{})
|
|
}
|
|
|
|
func TestGradientDescent(t *testing.T) {
|
|
testLocal(t, gradientDescentTests, &GradientDescent{})
|
|
}
|
|
|
|
func TestGradientDescentBacktracking(t *testing.T) {
|
|
testLocal(t, gradientDescentTests, &GradientDescent{
|
|
Linesearcher: &Backtracking{
|
|
DecreaseFactor: 0.1,
|
|
},
|
|
})
|
|
}
|
|
|
|
func TestGradientDescentBisection(t *testing.T) {
|
|
testLocal(t, gradientDescentTests, &GradientDescent{
|
|
Linesearcher: &Bisection{},
|
|
})
|
|
}
|
|
|
|
func TestCG(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{})
|
|
}
|
|
|
|
func TestFletcherReevesQuadStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &FletcherReeves{},
|
|
InitialStep: &QuadraticStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestFletcherReevesFirstOrderStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &FletcherReeves{},
|
|
InitialStep: &FirstOrderStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestHestenesStiefelQuadStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &HestenesStiefel{},
|
|
InitialStep: &QuadraticStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestHestenesStiefelFirstOrderStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &HestenesStiefel{},
|
|
InitialStep: &FirstOrderStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestPolakRibiereQuadStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &PolakRibierePolyak{},
|
|
InitialStep: &QuadraticStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestPolakRibiereFirstOrderStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &PolakRibierePolyak{},
|
|
InitialStep: &FirstOrderStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestDaiYuanQuadStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &DaiYuan{},
|
|
InitialStep: &QuadraticStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestDaiYuanFirstOrderStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &DaiYuan{},
|
|
InitialStep: &FirstOrderStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestHagerZhangQuadStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &HagerZhang{},
|
|
InitialStep: &QuadraticStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestHagerZhangFirstOrderStep(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, cgTests...)
|
|
testLocal(t, tests, &CG{
|
|
Variant: &HagerZhang{},
|
|
InitialStep: &FirstOrderStepSize{},
|
|
})
|
|
}
|
|
|
|
func TestBFGS(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, quasiNewtonTests...)
|
|
tests = append(tests, bfgsTests...)
|
|
testLocal(t, tests, &BFGS{})
|
|
}
|
|
|
|
func TestLBFGS(t *testing.T) {
|
|
var tests []unconstrainedTest
|
|
tests = append(tests, gradientDescentTests...)
|
|
tests = append(tests, quasiNewtonTests...)
|
|
tests = append(tests, lbfgsTests...)
|
|
testLocal(t, tests, &LBFGS{})
|
|
}
|
|
|
|
func TestNewton(t *testing.T) {
|
|
testLocal(t, newtonTests, &Newton{})
|
|
}
|
|
|
|
func testLocal(t *testing.T, tests []unconstrainedTest, method Method) {
|
|
for cas, test := range tests {
|
|
if test.long && testing.Short() {
|
|
continue
|
|
}
|
|
|
|
settings := &Settings{}
|
|
settings.Converger = defaultFunctionConverge()
|
|
if method != nil && method.Needs().Gradient {
|
|
// Turn off function convergence checks for gradient-based methods.
|
|
settings.Converger = NeverTerminate{}
|
|
} else {
|
|
if test.fIter == 0 {
|
|
test.fIter = 20
|
|
}
|
|
c := settings.Converger.(*FunctionConverge)
|
|
c.Iterations = test.fIter
|
|
if test.fAbsTol == 0 {
|
|
test.fAbsTol = 1e-12
|
|
}
|
|
c.Absolute = test.fAbsTol
|
|
settings.Converger = c
|
|
}
|
|
if test.gradTol == 0 {
|
|
test.gradTol = 1e-12
|
|
}
|
|
settings.GradientThreshold = test.gradTol
|
|
|
|
result, err := Minimize(test.p, test.x, settings, method)
|
|
if err != nil {
|
|
t.Errorf("Case %d: error finding minimum (%v) for:\n%v", cas, err, test)
|
|
continue
|
|
}
|
|
if result == nil {
|
|
t.Errorf("Case %d: nil result without error for:\n%v", cas, test)
|
|
continue
|
|
}
|
|
|
|
// Check that the function value at the found optimum location is
|
|
// equal to result.F.
|
|
optF := test.p.Func(result.X)
|
|
if optF != result.F {
|
|
t.Errorf("Case %d: Function value at the optimum location %v not equal to the returned value %v for:\n%v",
|
|
cas, optF, result.F, test)
|
|
}
|
|
if result.Gradient != nil {
|
|
// Evaluate the norm of the gradient at the found optimum location.
|
|
g := make([]float64, len(test.x))
|
|
test.p.Grad(g, result.X)
|
|
|
|
if !floats.Equal(result.Gradient, g) {
|
|
t.Errorf("Case %d: Gradient at the optimum location not equal to the returned value for:\n%v", cas, test)
|
|
}
|
|
|
|
optNorm := floats.Norm(g, math.Inf(1))
|
|
// Check that the norm of the gradient at the found optimum location is
|
|
// smaller than the tolerance.
|
|
if optNorm >= settings.GradientThreshold {
|
|
t.Errorf("Case %d: Norm of the gradient at the optimum location %v not smaller than tolerance %v for:\n%v",
|
|
cas, optNorm, settings.GradientThreshold, test)
|
|
}
|
|
}
|
|
|
|
if method == nil {
|
|
// The tests below make sense only if the method used is known.
|
|
continue
|
|
}
|
|
|
|
if !method.Needs().Gradient && !method.Needs().Hessian {
|
|
// Gradient-free tests can correctly terminate only with
|
|
// FunctionConvergence status.
|
|
if result.Status != FunctionConvergence {
|
|
t.Errorf("Status not %v, %v instead", FunctionConvergence, result.Status)
|
|
}
|
|
}
|
|
|
|
// We are going to restart the solution using known initial data, so
|
|
// evaluate them.
|
|
settings.InitValues = &Location{}
|
|
settings.InitValues.F = test.p.Func(test.x)
|
|
if method.Needs().Gradient {
|
|
settings.InitValues.Gradient = resize(settings.InitValues.Gradient, len(test.x))
|
|
test.p.Grad(settings.InitValues.Gradient, test.x)
|
|
}
|
|
if method.Needs().Hessian {
|
|
settings.InitValues.Hessian = mat.NewSymDense(len(test.x), nil)
|
|
test.p.Hess(settings.InitValues.Hessian, test.x)
|
|
}
|
|
|
|
// Rerun the test again to make sure that it gets the same answer with
|
|
// the same starting condition. Moreover, we are using the initial data.
|
|
result2, err2 := Minimize(test.p, test.x, settings, method)
|
|
if err2 != nil {
|
|
t.Errorf("error finding minimum second time (%v) for:\n%v", err2, test)
|
|
continue
|
|
}
|
|
if result2 == nil {
|
|
t.Errorf("second time nil result without error for:\n%v", test)
|
|
continue
|
|
}
|
|
|
|
// At the moment all the optimizers are deterministic, so check that we
|
|
// get _exactly_ the same answer second time as well.
|
|
if result.F != result2.F || !floats.Equal(result.X, result2.X) {
|
|
t.Errorf("Different minimum second time for:\n%v", test)
|
|
}
|
|
|
|
// Check that providing initial data reduces the number of evaluations exactly by one.
|
|
if result.FuncEvaluations != result2.FuncEvaluations+1 {
|
|
t.Errorf("Providing initial data does not reduce the number of Func calls for:\n%v", test)
|
|
continue
|
|
}
|
|
if method.Needs().Gradient {
|
|
if result.GradEvaluations != result2.GradEvaluations+1 {
|
|
t.Errorf("Providing initial data does not reduce the number of Grad calls for:\n%v", test)
|
|
continue
|
|
}
|
|
}
|
|
if method.Needs().Hessian {
|
|
if result.HessEvaluations != result2.HessEvaluations+1 {
|
|
t.Errorf("Providing initial data does not reduce the number of Hess calls for:\n%v", test)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestIssue76(t *testing.T) {
|
|
p := Problem{
|
|
Func: functions.BrownAndDennis{}.Func,
|
|
Grad: functions.BrownAndDennis{}.Grad,
|
|
}
|
|
// Location very close to the minimum.
|
|
x := []float64{-11.594439904886773, 13.203630051265385, -0.40343948776868443, 0.2367787746745986}
|
|
s := &Settings{
|
|
MajorIterations: 1000000,
|
|
}
|
|
m := &GradientDescent{
|
|
GradStopThreshold: 1e-14,
|
|
Linesearcher: &Backtracking{},
|
|
}
|
|
// We are not interested in the error, only in the returned status.
|
|
r, _ := Minimize(p, x, s, m)
|
|
// With the above stringent tolerance, the optimizer will never
|
|
// successfully reach the minimum. Check if it terminated in a finite
|
|
// number of steps.
|
|
if r.Status == IterationLimit {
|
|
t.Error("Issue https://github.com/gonum/optimize/issues/76 not fixed")
|
|
}
|
|
}
|
|
|
|
func TestNelderMeadOneD(t *testing.T) {
|
|
p := Problem{
|
|
Func: func(x []float64) float64 { return x[0] * x[0] },
|
|
}
|
|
x := []float64{10}
|
|
m := &NelderMead{}
|
|
var s *Settings
|
|
result, err := Minimize(p, x, s, m)
|
|
if err != nil {
|
|
t.Errorf(err.Error())
|
|
}
|
|
if !floats.EqualApprox(result.X, []float64{0}, 1e-10) {
|
|
t.Errorf("Minimum not found")
|
|
}
|
|
if m.reflection != 1 {
|
|
t.Errorf("Wrong value of reflection")
|
|
}
|
|
if m.expansion != 2 {
|
|
t.Errorf("Wrong value of expansion")
|
|
}
|
|
if m.contraction != 0.5 {
|
|
t.Errorf("Wrong value of contraction")
|
|
}
|
|
if m.shrink != 0.5 {
|
|
t.Errorf("Wrong value of shrink")
|
|
}
|
|
}
|