mirror of
https://github.com/gonum/gonum.git
synced 2025-11-02 11:24:13 +08:00
231 lines
6.4 KiB
Go
231 lines
6.4 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package distmv
|
|
|
|
import (
|
|
"math"
|
|
"math/rand"
|
|
"sync"
|
|
|
|
"github.com/gonum/floats"
|
|
"github.com/gonum/matrix/mat64"
|
|
)
|
|
|
|
// Normal is a multivariate normal distribution (also known as the multivariate
|
|
// Gaussian distribution). Its pdf in k dimensions is given by
|
|
// (2 π)^(-k/2) |Σ|^(-1/2) exp(-1/2 (x-μ)'Σ^-1(x-μ))
|
|
// where μ is the mean vector and Σ the covariance matrix. Σ must be symmetric
|
|
// and positive definite. Use NewNormal to construct.
|
|
type Normal struct {
|
|
mu []float64
|
|
|
|
once sync.Once
|
|
sigma *mat64.SymDense // only stored if needed
|
|
|
|
chol mat64.Cholesky
|
|
lower mat64.TriDense
|
|
logSqrtDet float64
|
|
dim int
|
|
|
|
src *rand.Rand
|
|
}
|
|
|
|
// NewNormal creates a new Normal with the given mean and covariance matrix.
|
|
// NewNormal panics if len(mu) == 0, or if len(mu) != sigma.N. If the covariance
|
|
// matrix is not positive-definite, the returned boolean is false.
|
|
func NewNormal(mu []float64, sigma mat64.Symmetric, src *rand.Rand) (*Normal, bool) {
|
|
if len(mu) == 0 {
|
|
panic(badZeroDimension)
|
|
}
|
|
dim := sigma.Symmetric()
|
|
if dim != len(mu) {
|
|
panic(badSizeMismatch)
|
|
}
|
|
n := &Normal{
|
|
src: src,
|
|
dim: dim,
|
|
mu: make([]float64, dim),
|
|
}
|
|
copy(n.mu, mu)
|
|
ok := n.chol.Factorize(sigma)
|
|
if !ok {
|
|
return nil, false
|
|
}
|
|
n.lower.LFromCholesky(&n.chol)
|
|
n.logSqrtDet = 0.5 * n.chol.LogDet()
|
|
return n, true
|
|
}
|
|
|
|
// Dim returns the dimension of the distribution.
|
|
func (n *Normal) Dim() int {
|
|
return n.dim
|
|
}
|
|
|
|
// Entropy returns the differential entropy of the distribution.
|
|
func (n *Normal) Entropy() float64 {
|
|
return float64(n.dim)/2*(1+logTwoPi) + n.logSqrtDet
|
|
}
|
|
|
|
// LogProb computes the log of the pdf of the point x.
|
|
func (n *Normal) LogProb(x []float64) float64 {
|
|
dim := n.dim
|
|
if len(x) != dim {
|
|
panic(badSizeMismatch)
|
|
}
|
|
// Compute the normalization constant
|
|
c := -0.5*float64(dim)*logTwoPi - n.logSqrtDet
|
|
|
|
// Compute (x-mu)'Sigma^-1 (x-mu)
|
|
xMinusMu := make([]float64, dim)
|
|
floats.SubTo(xMinusMu, x, n.mu)
|
|
d := mat64.NewVector(dim, xMinusMu)
|
|
tmp := make([]float64, dim)
|
|
tmpVec := mat64.NewVector(dim, tmp)
|
|
tmpVec.SolveCholeskyVec(&n.chol, d)
|
|
return c - 0.5*floats.Dot(tmp, xMinusMu)
|
|
}
|
|
|
|
// Mean returns the mean of the probability distribution at x. If the
|
|
// input argument is nil, a new slice will be allocated, otherwise the result
|
|
// will be put in-place into the receiver.
|
|
func (n *Normal) Mean(x []float64) []float64 {
|
|
x = reuseAs(x, n.dim)
|
|
copy(x, n.mu)
|
|
return x
|
|
}
|
|
|
|
// Prob computes the value of the probability density function at x.
|
|
func (n *Normal) Prob(x []float64) float64 {
|
|
return math.Exp(n.LogProb(x))
|
|
}
|
|
|
|
// Rand generates a random number according to the distributon.
|
|
// If the input slice is nil, new memory is allocated, otherwise the result is stored
|
|
// in place.
|
|
func (n *Normal) Rand(x []float64) []float64 {
|
|
x = reuseAs(x, n.dim)
|
|
tmp := make([]float64, n.dim)
|
|
if n.src == nil {
|
|
for i := range x {
|
|
tmp[i] = rand.NormFloat64()
|
|
}
|
|
} else {
|
|
for i := range x {
|
|
tmp[i] = n.src.NormFloat64()
|
|
}
|
|
}
|
|
tmpVec := mat64.NewVector(n.dim, tmp)
|
|
xVec := mat64.NewVector(n.dim, x)
|
|
xVec.MulVec(&n.lower, tmpVec)
|
|
floats.Add(x, n.mu)
|
|
return x
|
|
}
|
|
|
|
// ConditionNormal returns the Normal distribution that is the receiver conditioned
|
|
// on the input evidence. The returned multivariate normal has dimension
|
|
// n - len(observed), where n is the dimension of the original receiver. The updated
|
|
// mean and covariance are
|
|
// mu = mu_un + sigma_{ob,un}^T * sigma_{ob,ob}^-1 (v - mu_ob)
|
|
// sigma = sigma_{un,un} - sigma_{ob,un}^T * sigma_{ob,ob}^-1 * sigma_{ob,un}
|
|
// where mu_un and mu_ob are the original means of the unobserved and observed
|
|
// variables respectively, sigma_{un,un} is the unobserved subset of the covariance
|
|
// matrix, sigma_{ob,ob} is the observed subset of the covariance matrix, and
|
|
// sigma_{un,ob} are the cross terms. The elements of x_2 have been observed with
|
|
// values v. The dimension order is preserved during conditioning, so if the value
|
|
// of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...}
|
|
// of the original Normal distribution.
|
|
//
|
|
// ConditionNormal returns {nil, false} if there is a failure during the update.
|
|
// Mathematically this is impossible, but can occur with finite precision arithmetic.
|
|
func (n *Normal) ConditionNormal(observed []int, values []float64, src *rand.Rand) (*Normal, bool) {
|
|
if len(observed) != len(values) {
|
|
panic("normal: input slice length mismatch")
|
|
}
|
|
|
|
n.setSigma()
|
|
|
|
ob := len(observed)
|
|
unob := n.Dim() - ob
|
|
obMap := make(map[int]struct{})
|
|
for _, v := range observed {
|
|
if _, ok := obMap[v]; ok {
|
|
panic("normal: observed dimension occurs twice")
|
|
}
|
|
obMap[v] = struct{}{}
|
|
}
|
|
unobserved := make([]int, 0, unob)
|
|
for i := 0; i < n.Dim(); i++ {
|
|
if _, ok := obMap[i]; !ok {
|
|
unobserved = append(unobserved, i)
|
|
}
|
|
}
|
|
mu1 := make([]float64, unob)
|
|
for i, v := range unobserved {
|
|
mu1[i] = n.mu[v]
|
|
}
|
|
mu2 := make([]float64, ob) // really v - mu2
|
|
for i, v := range observed {
|
|
mu2[i] = values[i] - n.mu[v]
|
|
}
|
|
|
|
var sigma11, sigma22 mat64.SymDense
|
|
sigma11.SubsetSym(n.sigma, unobserved)
|
|
sigma22.SubsetSym(n.sigma, observed)
|
|
|
|
sigma21 := mat64.NewDense(ob, unob, nil)
|
|
for i, r := range observed {
|
|
for j, c := range unobserved {
|
|
v := n.sigma.At(r, c)
|
|
sigma21.Set(i, j, v)
|
|
}
|
|
}
|
|
|
|
var chol mat64.Cholesky
|
|
ok := chol.Factorize(&sigma22)
|
|
if !ok {
|
|
return nil, ok
|
|
}
|
|
|
|
// Compute sigma_{2,1}^T * sigma_{2,2}^-1 (v - mu_2).
|
|
v := mat64.NewVector(ob, mu2)
|
|
var tmp, tmp2 mat64.Vector
|
|
err := tmp.SolveCholeskyVec(&chol, v)
|
|
if err != nil {
|
|
return nil, false
|
|
}
|
|
tmp2.MulVec(sigma21.T(), &tmp)
|
|
|
|
// Compute sigma_{2,1}^T * sigma_{2,2}^-1 * sigma_{2,1}.
|
|
// TODO(btracey): Should this be a method of SymDense?
|
|
var tmp3, tmp4 mat64.Dense
|
|
err = tmp3.SolveCholesky(&chol, sigma21)
|
|
if err != nil {
|
|
return nil, false
|
|
}
|
|
tmp4.Mul(sigma21.T(), &tmp3)
|
|
|
|
for i := range mu1 {
|
|
mu1[i] += tmp2.At(i, 0)
|
|
}
|
|
|
|
// TODO(btracey): If tmp2 can constructed with a method, then this can be
|
|
// replaced with SubSym.
|
|
for i := 0; i < len(unobserved); i++ {
|
|
for j := i; j < len(unobserved); j++ {
|
|
v := sigma11.At(i, j)
|
|
sigma11.SetSym(i, j, v-tmp4.At(i, j))
|
|
}
|
|
}
|
|
return NewNormal(mu1, &sigma11, src)
|
|
}
|
|
|
|
// setSigma computes and stores the covariance matrix of the distribution.
|
|
func (n *Normal) setSigma() {
|
|
n.once.Do(func() {
|
|
n.sigma = mat64.NewSymDense(n.Dim(), nil)
|
|
n.sigma.FromCholesky(&n.chol)
|
|
})
|
|
}
|