mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-25 08:10:28 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			133 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			133 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2017 The Gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package fd
 | |
| 
 | |
| import "gonum.org/v1/gonum/mat"
 | |
| 
 | |
| // Watson implements the Watson's function.
 | |
| // Dimension of the problem should be 2 <= dim <= 31. For dim == 9, the problem
 | |
| // of minimizing the function is very ill conditioned.
 | |
| //
 | |
| // This is copied from gonum.org/v1/optimize/functions for testing Hessian-like
 | |
| // derivative methods.
 | |
| //
 | |
| // References:
 | |
| //  - Kowalik, J.S., Osborne, M.R.: Methods for Unconstrained Optimization
 | |
| //    Problems. Elsevier North-Holland, New York, 1968
 | |
| //  - More, J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained
 | |
| //    optimization software. ACM Trans Math Softw 7 (1981), 17-41
 | |
| type Watson struct{}
 | |
| 
 | |
| func (Watson) Func(x []float64) (sum float64) {
 | |
| 	for i := 1; i <= 29; i++ {
 | |
| 		d1 := float64(i) / 29
 | |
| 
 | |
| 		d2 := 1.0
 | |
| 		var s1 float64
 | |
| 		for j := 1; j < len(x); j++ {
 | |
| 			s1 += float64(j) * d2 * x[j]
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 
 | |
| 		d2 = 1.0
 | |
| 		var s2 float64
 | |
| 		for _, v := range x {
 | |
| 			s2 += d2 * v
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 
 | |
| 		t := s1 - s2*s2 - 1
 | |
| 		sum += t * t
 | |
| 	}
 | |
| 	t := x[1] - x[0]*x[0] - 1
 | |
| 	sum += x[0]*x[0] + t*t
 | |
| 	return sum
 | |
| }
 | |
| 
 | |
| func (Watson) Grad(grad, x []float64) {
 | |
| 	if len(x) != len(grad) {
 | |
| 		panic("incorrect size of the gradient")
 | |
| 	}
 | |
| 
 | |
| 	for i := range grad {
 | |
| 		grad[i] = 0
 | |
| 	}
 | |
| 	for i := 1; i <= 29; i++ {
 | |
| 		d1 := float64(i) / 29
 | |
| 
 | |
| 		d2 := 1.0
 | |
| 		var s1 float64
 | |
| 		for j := 1; j < len(x); j++ {
 | |
| 			s1 += float64(j) * d2 * x[j]
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 
 | |
| 		d2 = 1.0
 | |
| 		var s2 float64
 | |
| 		for _, v := range x {
 | |
| 			s2 += d2 * v
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 
 | |
| 		t := s1 - s2*s2 - 1
 | |
| 		s3 := 2 * d1 * s2
 | |
| 		d2 = 2 / d1
 | |
| 		for j := range x {
 | |
| 			grad[j] += d2 * (float64(j) - s3) * t
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 	}
 | |
| 	t := x[1] - x[0]*x[0] - 1
 | |
| 	grad[0] += x[0] * (2 - 4*t)
 | |
| 	grad[1] += 2 * t
 | |
| }
 | |
| 
 | |
| func (Watson) Hess(hess mat.MutableSymmetric, x []float64) {
 | |
| 	dim := len(x)
 | |
| 	if dim != hess.Symmetric() {
 | |
| 		panic("incorrect size of the Hessian")
 | |
| 	}
 | |
| 
 | |
| 	for j := 0; j < dim; j++ {
 | |
| 		for k := j; k < dim; k++ {
 | |
| 			hess.SetSym(j, k, 0)
 | |
| 		}
 | |
| 	}
 | |
| 	for i := 1; i <= 29; i++ {
 | |
| 		d1 := float64(i) / 29
 | |
| 		d2 := 1.0
 | |
| 		var s1 float64
 | |
| 		for j := 1; j < dim; j++ {
 | |
| 			s1 += float64(j) * d2 * x[j]
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 
 | |
| 		d2 = 1.0
 | |
| 		var s2 float64
 | |
| 		for _, v := range x {
 | |
| 			s2 += d2 * v
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 
 | |
| 		t := s1 - s2*s2 - 1
 | |
| 		s3 := 2 * d1 * s2
 | |
| 		d2 = 2 / d1
 | |
| 		th := 2 * d1 * d1 * t
 | |
| 		for j := 0; j < dim; j++ {
 | |
| 			v := float64(j) - s3
 | |
| 			d3 := 1 / d1
 | |
| 			for k := 0; k <= j; k++ {
 | |
| 				hess.SetSym(k, j, hess.At(k, j)+d2*d3*(v*(float64(k)-s3)-th))
 | |
| 				d3 *= d1
 | |
| 			}
 | |
| 			d2 *= d1
 | |
| 		}
 | |
| 	}
 | |
| 	t1 := x[1] - x[0]*x[0] - 1
 | |
| 	hess.SetSym(0, 0, hess.At(0, 0)+8*x[0]*x[0]+2-4*t1)
 | |
| 	hess.SetSym(0, 1, hess.At(0, 1)-4*x[0])
 | |
| 	hess.SetSym(1, 1, hess.At(1, 1)+2)
 | |
| }
 | 
