Files
gonum/diff/fd/hessian.go
Brendan Tracey 975d99cd20 mat,all: Rename IsZero to IsEmpty (#1088)
This avoids the confusion between Zero() and IsZero() which sounds like they should be related
to one another but are not. This makes IsEmpty the counterpart to Reset. Add check for Zero in allMatrix

Fixes #1083.
Updates #1081.
2019-09-15 13:53:29 +01:00

187 lines
5.0 KiB
Go

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fd
import (
"math"
"sync"
"gonum.org/v1/gonum/mat"
)
// Hessian approximates the Hessian matrix of the multivariate function f at
// the location x. That is
// H_{i,j} = ∂^2 f(x)/∂x_i ∂x_j
// The resulting H will be stored in dst. Finite difference formula and other
// options are specified by settings. If settings is nil, the Hessian will be
// estimated using the Forward formula and a default step size.
//
// If the dst matrix is empty it will be resized to the correct dimensions,
// otherwise the dimensions of dst must match the length of x or Hessian will panic.
// Hessian will panic if the derivative order of the formula is not 1.
func Hessian(dst *mat.SymDense, f func(x []float64) float64, x []float64, settings *Settings) {
n := len(x)
if dst.IsEmpty() {
*dst = *(dst.GrowSym(n).(*mat.SymDense))
} else if dst.Symmetric() != n {
panic("hessian: dst size mismatch")
}
dst.Zero()
// Default settings.
formula := Forward
step := math.Sqrt(formula.Step) // Use the sqrt because taking derivatives of derivatives.
var originValue float64
var originKnown, concurrent bool
// Use user settings if provided.
if settings != nil {
if !settings.Formula.isZero() {
formula = settings.Formula
step = math.Sqrt(formula.Step)
checkFormula(formula)
if formula.Derivative != 1 {
panic(badDerivOrder)
}
}
if settings.Step != 0 {
if settings.Step < 0 {
panic(negativeStep)
}
step = settings.Step
}
originKnown = settings.OriginKnown
originValue = settings.OriginValue
concurrent = settings.Concurrent
}
evals := n * (n + 1) / 2 * len(formula.Stencil) * len(formula.Stencil)
for _, pt := range formula.Stencil {
if pt.Loc == 0 {
evals -= n * (n + 1) / 2
break
}
}
nWorkers := computeWorkers(concurrent, evals)
if nWorkers == 1 {
hessianSerial(dst, f, x, formula.Stencil, step, originKnown, originValue)
return
}
hessianConcurrent(dst, nWorkers, evals, f, x, formula.Stencil, step, originKnown, originValue)
}
func hessianSerial(dst *mat.SymDense, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
n := len(x)
xCopy := make([]float64, n)
fo := func() float64 {
// Copy x in case it is modified during the call.
copy(xCopy, x)
return f(x)
}
is2 := 1 / (step * step)
origin := getOrigin(originKnown, originValue, fo, stencil)
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
var hess float64
for _, pti := range stencil {
for _, ptj := range stencil {
var v float64
if pti.Loc == 0 && ptj.Loc == 0 {
v = origin
} else {
// Copying the data anew has two benefits. First, it
// avoids floating point issues where adding and then
// subtracting the step don't return to the exact same
// location. Secondly, it protects against the function
// modifying the input data.
copy(xCopy, x)
xCopy[i] += pti.Loc * step
xCopy[j] += ptj.Loc * step
v = f(xCopy)
}
hess += v * pti.Coeff * ptj.Coeff * is2
}
}
dst.SetSym(i, j, hess)
}
}
}
func hessianConcurrent(dst *mat.SymDense, nWorkers, evals int, f func(x []float64) float64, x []float64, stencil []Point, step float64, originKnown bool, originValue float64) {
n := dst.Symmetric()
type run struct {
i, j int
iIdx, jIdx int
result float64
}
send := make(chan run, evals)
ans := make(chan run, evals)
var originWG sync.WaitGroup
hasOrigin := usesOrigin(stencil)
if hasOrigin {
originWG.Add(1)
// Launch worker to compute the origin.
go func() {
defer originWG.Done()
xCopy := make([]float64, len(x))
copy(xCopy, x)
originValue = f(xCopy)
}()
}
var workerWG sync.WaitGroup
// Launch workers.
for i := 0; i < nWorkers; i++ {
workerWG.Add(1)
go func(send <-chan run, ans chan<- run) {
defer workerWG.Done()
xCopy := make([]float64, len(x))
for r := range send {
if stencil[r.iIdx].Loc == 0 && stencil[r.jIdx].Loc == 0 {
originWG.Wait()
r.result = originValue
} else {
// See hessianSerial for comment on the copy.
copy(xCopy, x)
xCopy[r.i] += stencil[r.iIdx].Loc * step
xCopy[r.j] += stencil[r.jIdx].Loc * step
r.result = f(xCopy)
}
ans <- r
}
}(send, ans)
}
// Launch the distributor, which sends all of runs.
go func(send chan<- run) {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
for iIdx := range stencil {
for jIdx := range stencil {
send <- run{
i: i, j: j, iIdx: iIdx, jIdx: jIdx,
}
}
}
}
}
close(send)
// Wait for all the workers to quit, then close the ans channel.
workerWG.Wait()
close(ans)
}(send)
is2 := 1 / (step * step)
// Read in the results.
for r := range ans {
v := r.result * stencil[r.iIdx].Coeff * stencil[r.jIdx].Coeff * is2
v += dst.At(r.i, r.j)
dst.SetSym(r.i, r.j, v)
}
}