mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	 ec100cf00f
			
		
	
	ec100cf00f
	
	
	
		
			
			Improved function documentation Fixed dlarfb and dlarft and added full tests Added dgelq2 Working Dgels Fix many comments and tests Many PR comment responses Responded to more PR comments Many PR comments
		
			
				
	
	
		
			201 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			201 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| 
 | ||
| package native
 | ||
| 
 | ||
| import (
 | ||
| 	"github.com/gonum/blas"
 | ||
| 	"github.com/gonum/lapack"
 | ||
| )
 | ||
| 
 | ||
| // Dgels finds a minimum-norm solution based on the matrices a and b using the
 | ||
| // QR or LQ factorization. Dgels returns false if the matrix
 | ||
| // A is singular, and true if this solution was successfully found.
 | ||
| //
 | ||
| // The minimization problem solved depends on the input parameters.
 | ||
| //
 | ||
| //  1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2
 | ||
| //  is minimized.
 | ||
| //  2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of
 | ||
| //  A * X = B.
 | ||
| //  3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of
 | ||
| //  A^T * X = B.
 | ||
| //  4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2
 | ||
| //  is minimized.
 | ||
| // Note that the least-squares solutions (cases 1 and 3) perform the minimization
 | ||
| // per column of B. This is not the same as finding the minimum-norm matrix.
 | ||
| //
 | ||
| // The matrix a is a general matrix of size m×n and is modified during this call.
 | ||
| // The input matrix b is of size max(m,n)×nrhs, and serves two purposes. On entry,
 | ||
| // the elements of b specify the input matrix B. B has size m×nrhs if
 | ||
| // trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the
 | ||
| // leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans,
 | ||
| // this submatrix is of size n×nrhs, and of size m×nrhs otherwise.
 | ||
| //
 | ||
| // Work is temporary storage, and lwork specifies the usable memory length.
 | ||
| // At minimum, lwork >= max(m,n) + max(m,n,nrhs), and this function will panic
 | ||
| // otherwise. A longer work will enable blocked algorithms to be called.
 | ||
| // In the special case that lwork == -1, work[0] will be set to the optimal working
 | ||
| // length.
 | ||
| func (impl Implementation) Dgels(trans blas.Transpose, m, n, nrhs int, a []float64, lda int, b []float64, ldb int, work []float64, lwork int) bool {
 | ||
| 	notran := trans == blas.NoTrans
 | ||
| 	checkMatrix(m, n, a, lda)
 | ||
| 	mn := min(m, n)
 | ||
| 	checkMatrix(mn, nrhs, b, ldb)
 | ||
| 
 | ||
| 	// Find optimal block size.
 | ||
| 	tpsd := true
 | ||
| 	if notran {
 | ||
| 		tpsd = false
 | ||
| 	}
 | ||
| 	var nb int
 | ||
| 	if m >= n {
 | ||
| 		nb = impl.Ilaenv(1, "DGEQRF", " ", m, n, -1, -1)
 | ||
| 		if tpsd {
 | ||
| 			nb = max(nb, impl.Ilaenv(1, "DORMQR", "LN", m, nrhs, n, -1))
 | ||
| 		} else {
 | ||
| 			nb = max(nb, impl.Ilaenv(1, "DORMQR", "LT", m, nrhs, n, -1))
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		nb = impl.Ilaenv(1, "DGELQF", " ", m, n, -1, -1)
 | ||
| 		if tpsd {
 | ||
| 			nb = max(nb, impl.Ilaenv(1, "DORMLQ", "LT", n, nrhs, m, -1))
 | ||
| 		} else {
 | ||
| 			nb = max(nb, impl.Ilaenv(1, "DORMLQ", "LN", n, nrhs, m, -1))
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if lwork == -1 {
 | ||
| 		work[0] = float64(max(1, mn+max(mn, nrhs)*nb))
 | ||
| 		return true
 | ||
| 	}
 | ||
| 
 | ||
| 	if len(work) < lwork {
 | ||
| 		panic(shortWork)
 | ||
| 	}
 | ||
| 	if lwork < mn+max(mn, nrhs) {
 | ||
| 		panic(badWork)
 | ||
| 	}
 | ||
| 	if m == 0 || n == 0 || nrhs == 0 {
 | ||
| 		impl.Dlaset(blas.All, max(m, n), nrhs, 0, 0, b, ldb)
 | ||
| 		return true
 | ||
| 	}
 | ||
| 
 | ||
| 	// Scale the input matrices if they contain extreme values.
 | ||
| 	smlnum := dlamchS / dlamchP
 | ||
| 	bignum := 1 / smlnum
 | ||
| 	anrm := impl.Dlange(lapack.MaxAbs, m, n, a, lda, nil)
 | ||
| 	var iascl int
 | ||
| 	if anrm > 0 && anrm < smlnum {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, anrm, smlnum, m, n, a, lda)
 | ||
| 		iascl = 1
 | ||
| 	} else if anrm > bignum {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, anrm, bignum, m, n, a, lda)
 | ||
| 	} else if anrm == 0 {
 | ||
| 		// Matrix all zeros
 | ||
| 		impl.Dlaset(blas.All, max(m, n), nrhs, 0, 0, b, ldb)
 | ||
| 		return true
 | ||
| 	}
 | ||
| 	brow := m
 | ||
| 	if tpsd {
 | ||
| 		brow = n
 | ||
| 	}
 | ||
| 	bnrm := impl.Dlange(lapack.MaxAbs, brow, nrhs, b, ldb, nil)
 | ||
| 	ibscl := 0
 | ||
| 	if bnrm > 0 && bnrm < smlnum {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, bnrm, smlnum, brow, nrhs, b, ldb)
 | ||
| 		ibscl = 1
 | ||
| 	} else if bnrm > bignum {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, bnrm, bignum, brow, nrhs, b, ldb)
 | ||
| 		ibscl = 2
 | ||
| 	}
 | ||
| 
 | ||
| 	// Solve the minimization problem using a QR or an LQ decomposition.
 | ||
| 	var scllen int
 | ||
| 	if m >= n {
 | ||
| 		impl.Dgeqrf(m, n, a, lda, work, work[mn:], lwork-mn)
 | ||
| 		if !tpsd {
 | ||
| 			impl.Dormqr(blas.Left, blas.Trans, m, nrhs, n,
 | ||
| 				a, lda,
 | ||
| 				work,
 | ||
| 				b, ldb,
 | ||
| 				work[mn:], lwork-mn)
 | ||
| 			ok := impl.Dtrtrs(blas.Upper, blas.NoTrans, blas.NonUnit, n, nrhs,
 | ||
| 				a, lda,
 | ||
| 				b, ldb)
 | ||
| 			if !ok {
 | ||
| 				return false
 | ||
| 			}
 | ||
| 			scllen = n
 | ||
| 		} else {
 | ||
| 			ok := impl.Dtrtrs(blas.Upper, blas.Trans, blas.NonUnit, n, nrhs,
 | ||
| 				a, lda,
 | ||
| 				b, ldb)
 | ||
| 			if !ok {
 | ||
| 				return false
 | ||
| 			}
 | ||
| 			for i := n; i < m; i++ {
 | ||
| 				for j := 0; j < nrhs; j++ {
 | ||
| 					b[i*ldb+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 			impl.Dormqr(blas.Left, blas.NoTrans, m, nrhs, n,
 | ||
| 				a, lda,
 | ||
| 				work,
 | ||
| 				b, ldb,
 | ||
| 				work[mn:], lwork-mn)
 | ||
| 			scllen = m
 | ||
| 		}
 | ||
| 	} else {
 | ||
| 		impl.Dgelqf(m, n, a, lda, work, work[mn:], lwork-mn)
 | ||
| 		if !tpsd {
 | ||
| 			ok := impl.Dtrtrs(blas.Lower, blas.NoTrans, blas.NonUnit,
 | ||
| 				m, nrhs,
 | ||
| 				a, lda,
 | ||
| 				b, ldb)
 | ||
| 			if !ok {
 | ||
| 				return false
 | ||
| 			}
 | ||
| 			for i := m; i < n; i++ {
 | ||
| 				for j := 0; j < nrhs; j++ {
 | ||
| 					b[i*ldb+j] = 0
 | ||
| 				}
 | ||
| 			}
 | ||
| 			impl.Dormlq(blas.Left, blas.Trans, n, nrhs, m,
 | ||
| 				a, lda,
 | ||
| 				work,
 | ||
| 				b, ldb,
 | ||
| 				work[mn:], lwork-mn)
 | ||
| 			scllen = n
 | ||
| 		} else {
 | ||
| 			impl.Dormlq(blas.Left, blas.NoTrans, n, nrhs, m,
 | ||
| 				a, lda,
 | ||
| 				work,
 | ||
| 				b, ldb,
 | ||
| 				work[mn:], lwork-mn)
 | ||
| 			ok := impl.Dtrtrs(blas.Lower, blas.Trans, blas.NonUnit,
 | ||
| 				m, nrhs,
 | ||
| 				a, lda,
 | ||
| 				b, ldb)
 | ||
| 			if !ok {
 | ||
| 				return false
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// Adjust answer vector based on scaling.
 | ||
| 	if iascl == 1 {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, anrm, smlnum, scllen, nrhs, b, ldb)
 | ||
| 	}
 | ||
| 	if iascl == 2 {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, anrm, bignum, scllen, nrhs, b, ldb)
 | ||
| 	}
 | ||
| 	if ibscl == 1 {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, smlnum, bnrm, scllen, nrhs, b, ldb)
 | ||
| 	}
 | ||
| 	if ibscl == 2 {
 | ||
| 		impl.Dlascl(lapack.General, 0, 0, bignum, bnrm, scllen, nrhs, b, ldb)
 | ||
| 	}
 | ||
| 	return true
 | ||
| }
 |