Files
gonum/covariancematrix_test.go
Jonathan J Lawlor d50d7fb383 correct weighted test, and make fixture clearer
Changed the names of the test table to be clearer.  Also made the
answer a matrix and used Dense.Equals instead of performing the
comparison on r, c, and the raw data.

Also, the old results for the weighted case were wrong.  I’ve added the
same items into the stat_test.go file.
2014-12-22 19:58:09 -05:00

164 lines
3.8 KiB
Go

// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"math/rand"
"testing"
"github.com/gonum/blas/goblas"
"github.com/gonum/matrix/mat64"
)
func init() {
mat64.Register(goblas.Blas{})
}
func TestCovarianceMatrix(t *testing.T) {
// An alternate way to test this is to call the Variance
// and Covariance functions and ensure that the results are identical.
for i, test := range []struct {
data mat64.Matrix
weights mat64.Vec
ans mat64.Matrix
}{
{
data: mat64.NewDense(5, 2, []float64{
-2, -4,
-1, 2,
0, 0,
1, -2,
2, 4,
}),
weights: nil,
ans: mat64.NewDense(2, 2, []float64{
2.5, 3,
3, 10,
}),
}, {
data: mat64.NewDense(3, 2, []float64{
1, 1,
2, 4,
3, 9,
}),
weights: []float64{
1,
1.5,
1,
},
ans: mat64.NewDense(2, 2, []float64{
.8, 3.2,
3.2, 13.142857142857146,
}),
},
} {
c := CovarianceMatrix(nil, test.data, test.weights)
if !c.Equals(test.ans) {
t.Errorf("%d: expected cov %v, found %v", i, test.ans, c)
}
}
if !Panics(func() { CovarianceMatrix(nil, mat64.NewDense(5, 2, nil), mat64.Vec([]float64{})) }) {
t.Errorf("CovarianceMatrix did not panic with weight size mismatch")
}
if !Panics(func() { CovarianceMatrix(mat64.NewDense(1, 1, nil), mat64.NewDense(5, 2, nil), nil) }) {
t.Errorf("CovarianceMatrix did not panic with preallocation size mismatch")
}
}
// benchmarks
func randMat(r, c int) mat64.Matrix {
x := make([]float64, r*c)
for i := range x {
x[i] = rand.Float64()
}
return mat64.NewDense(r, c, x)
}
func benchmarkCovarianceMatrix(b *testing.B, m mat64.Matrix) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
CovarianceMatrix(nil, m, nil)
}
}
func benchmarkCovarianceMatrixInPlace(b *testing.B, m mat64.Matrix) {
_, c := m.Dims()
res := mat64.NewDense(c, c, nil)
b.ResetTimer()
for i := 0; i < b.N; i++ {
CovarianceMatrix(res, m, nil)
}
}
func BenchmarkCovarianceMatrixSmallxSmall(b *testing.B) {
// 10 * 10 elements
x := randMat(small, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixSmallxMedium(b *testing.B) {
// 10 * 1000 elements
x := randMat(small, medium)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixMediumxSmall(b *testing.B) {
// 1000 * 10 elements
x := randMat(medium, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixMediumxMedium(b *testing.B) {
// 1000 * 1000 elements
x := randMat(medium, medium)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixLargexSmall(b *testing.B) {
// 1e5 * 10 elements
x := randMat(large, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixHugexSmall(b *testing.B) {
// 1e7 * 10 elements
x := randMat(huge, small)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixSmallxSmallInPlace(b *testing.B) {
// 10 * 10 elements
x := randMat(small, small)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixSmallxMediumInPlace(b *testing.B) {
// 10 * 1000 elements
x := randMat(small, medium)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixMediumxSmallInPlace(b *testing.B) {
// 1000 * 10 elements
x := randMat(medium, small)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixMediumxMediumInPlace(b *testing.B) {
// 1000 * 1000 elements
x := randMat(medium, medium)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixLargexSmallInPlace(b *testing.B) {
// 1e5 * 10 elements
x := randMat(large, small)
benchmarkCovarianceMatrixInPlace(b, x)
}
func BenchmarkCovarianceMatrixHugexSmallInPlace(b *testing.B) {
// 1e7 * 10 elements
x := randMat(huge, small)
benchmarkCovarianceMatrixInPlace(b, x)
}