mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
180 lines
4.6 KiB
Go
180 lines
4.6 KiB
Go
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package testlapack
|
||
|
||
import (
|
||
"fmt"
|
||
"math"
|
||
"testing"
|
||
|
||
"golang.org/x/exp/rand"
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/floats"
|
||
"gonum.org/v1/gonum/lapack"
|
||
)
|
||
|
||
type Dpbconer interface {
|
||
Dpbcon(uplo blas.Uplo, n, kd int, ab []float64, ldab int, anorm float64, work []float64, iwork []int) float64
|
||
|
||
Dpbtrser
|
||
Dlanger
|
||
}
|
||
|
||
// DpbconTest tests Dpbcon by generating a random symmetric band matrix A and
|
||
// checking that the estimated condition number is not too different from the
|
||
// condition number computed via the explicit inverse of A.
|
||
func DpbconTest(t *testing.T, impl Dpbconer) {
|
||
rnd := rand.New(rand.NewSource(1))
|
||
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 50} {
|
||
for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} {
|
||
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
|
||
for _, ldab := range []int{kd + 1, kd + 1 + 3} {
|
||
dpbconTest(t, impl, uplo, n, kd, ldab, rnd)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
func dpbconTest(t *testing.T, impl Dpbconer, uplo blas.Uplo, n, kd, ldab int, rnd *rand.Rand) {
|
||
const ratioThresh = 10
|
||
|
||
name := fmt.Sprintf("uplo=%v,n=%v,kd=%v,ldab=%v", string(uplo), n, kd, ldab)
|
||
|
||
// Generate a random symmetric positive definite band matrix.
|
||
ab := randSymBand(uplo, n, kd, ldab, rnd)
|
||
|
||
// Compute the Cholesky decomposition of A.
|
||
abFac := make([]float64, len(ab))
|
||
copy(abFac, ab)
|
||
ok := impl.Dpbtrf(uplo, n, kd, abFac, ldab)
|
||
if !ok {
|
||
t.Fatalf("%v: bad test matrix, Dpbtrf failed", name)
|
||
}
|
||
|
||
// Compute the norm of A.
|
||
work := make([]float64, 3*n)
|
||
aNorm := dlansb(lapack.MaxColumnSum, uplo, n, kd, ab, ldab, work)
|
||
|
||
// Compute an estimate of rCond.
|
||
iwork := make([]int, n)
|
||
abFacCopy := make([]float64, len(abFac))
|
||
copy(abFacCopy, abFac)
|
||
rCondGot := impl.Dpbcon(uplo, n, kd, abFac, ldab, aNorm, work, iwork)
|
||
|
||
if !floats.Equal(abFac, abFacCopy) {
|
||
t.Errorf("%v: unexpected modification of ab", name)
|
||
}
|
||
|
||
// Form the inverse of A to compute a good estimate of the condition number
|
||
// rCondWant := 1/(norm(A) * norm(inv(A)))
|
||
lda := max(1, n)
|
||
aInv := make([]float64, n*lda)
|
||
for i := 0; i < n; i++ {
|
||
aInv[i*lda+i] = 1
|
||
}
|
||
impl.Dpbtrs(uplo, n, kd, n, abFac, ldab, aInv, lda)
|
||
aInvNorm := impl.Dlange(lapack.MaxColumnSum, n, n, aInv, lda, work)
|
||
rCondWant := 1.0
|
||
if aNorm > 0 && aInvNorm > 0 {
|
||
rCondWant = 1 / aNorm / aInvNorm
|
||
}
|
||
|
||
ratio := rCondTestRatio(rCondGot, rCondWant)
|
||
if ratio >= ratioThresh {
|
||
t.Errorf("%v: unexpected value of rcond. got=%v, want=%v (ratio=%v)", name, rCondGot, rCondWant, ratio)
|
||
}
|
||
}
|
||
|
||
// dlansb returns the given norm of an n×n symmetric band matrix.
|
||
func dlansb(norm lapack.MatrixNorm, uplo blas.Uplo, n, kd int, ab []float64, ldab int, work []float64) float64 {
|
||
// TODO(vladimir-ch): implement the Frobenius norm, add tests and move this
|
||
// function to 'lapack/gonum'.
|
||
|
||
if n == 0 {
|
||
return 0
|
||
}
|
||
|
||
var value float64
|
||
switch norm {
|
||
case lapack.MaxAbs:
|
||
if uplo == blas.Upper {
|
||
for i := 0; i < n; i++ {
|
||
for j := 0; j < min(n-i, kd+1); j++ {
|
||
aij := math.Abs(ab[i*ldab+j])
|
||
if aij > value || math.IsNaN(aij) {
|
||
value = aij
|
||
}
|
||
}
|
||
}
|
||
} else {
|
||
for i := 0; i < n; i++ {
|
||
for j := max(0, kd-i); j < kd+1; j++ {
|
||
aij := math.Abs(ab[i*ldab+j])
|
||
if aij > value || math.IsNaN(aij) {
|
||
value = aij
|
||
}
|
||
}
|
||
}
|
||
}
|
||
case lapack.MaxColumnSum, lapack.MaxRowSum:
|
||
work = work[:n]
|
||
var sum float64
|
||
if uplo == blas.Upper {
|
||
for i := range work {
|
||
work[i] = 0
|
||
}
|
||
for i := 0; i < n; i++ {
|
||
sum := work[i] + math.Abs(ab[i*ldab])
|
||
for j := i + 1; j < min(i+kd+1, n); j++ {
|
||
aij := math.Abs(ab[i*ldab+j-i])
|
||
sum += aij
|
||
work[j] += aij
|
||
}
|
||
if sum > value || math.IsNaN(sum) {
|
||
value = sum
|
||
}
|
||
}
|
||
} else {
|
||
for i := 0; i < n; i++ {
|
||
sum = 0
|
||
for j := max(0, i-kd); j < i; j++ {
|
||
aij := math.Abs(ab[i*ldab+kd+j-i])
|
||
sum += aij
|
||
work[j] += aij
|
||
}
|
||
work[i] = sum + math.Abs(ab[i*ldab+kd])
|
||
}
|
||
for _, sum := range work {
|
||
if sum > value || math.IsNaN(sum) {
|
||
value = sum
|
||
}
|
||
}
|
||
}
|
||
case lapack.Frobenius:
|
||
panic("not implemented")
|
||
}
|
||
|
||
return value
|
||
}
|
||
|
||
// rCondTestRatio returns a test ratio to compare two values of the reciprocal
|
||
// of the condition number.
|
||
//
|
||
// This function corresponds to DGET06 in Reference LAPACK.
|
||
func rCondTestRatio(rcond, rcondc float64) float64 {
|
||
const eps = dlamchE
|
||
switch {
|
||
case rcond > 0 && rcondc > 0:
|
||
return math.Max(rcond, rcondc)/math.Min(rcond, rcondc) - (1 - eps)
|
||
case rcond > 0:
|
||
return rcond / eps
|
||
case rcondc > 0:
|
||
return rcondc / eps
|
||
default:
|
||
return 0
|
||
}
|
||
}
|