Files
gonum/lapack/testlapack/dgelqf.go
2019-01-23 12:32:41 +01:00

102 lines
2.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/floats"
)
type Dgelqfer interface {
Dgelq2er
Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int)
}
func DgelqfTest(t *testing.T, impl Dgelqfer) {
const tol = 1e-12
rnd := rand.New(rand.NewSource(1))
for c, test := range []struct {
m, n, lda int
}{
{10, 5, 0},
{5, 10, 0},
{10, 10, 0},
{300, 5, 0},
{3, 500, 0},
{200, 200, 0},
{300, 200, 0},
{204, 300, 0},
{1, 3000, 0},
{3000, 1, 0},
{10, 5, 30},
{5, 10, 30},
{10, 10, 30},
{300, 5, 500},
{3, 500, 600},
{200, 200, 300},
{300, 200, 300},
{204, 300, 400},
{1, 3000, 4000},
{3000, 1, 4000},
} {
m := test.m
n := test.n
lda := test.lda
if lda == 0 {
lda = n
}
// Allocate m×n matrix A and fill it with random numbers.
a := make([]float64, m*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
// Store a copy of A for later comparison.
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Allocate a slice for scalar factors of elementary reflectors
// and fill it with random numbers.
tau := make([]float64, n)
for i := 0; i < n; i++ {
tau[i] = rnd.NormFloat64()
}
// Compute the expected result using unblocked LQ algorithm and
// store it want.
want := make([]float64, len(a))
copy(want, a)
impl.Dgelq2(m, n, want, lda, tau, make([]float64, m))
for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
copy(a, aCopy)
var lwork int
switch wl {
case minimumWork:
lwork = m
case mediumWork:
work := make([]float64, 1)
impl.Dgelqf(m, n, a, lda, tau, work, -1)
lwork = int(work[0]) - 2*m
case optimumWork:
work := make([]float64, 1)
impl.Dgelqf(m, n, a, lda, tau, work, -1)
lwork = int(work[0])
}
work := make([]float64, lwork)
// Compute the LQ factorization of A.
impl.Dgelqf(m, n, a, lda, tau, work, len(work))
// Compare the result with Dgelq2.
if !floats.EqualApprox(want, a, tol) {
t.Errorf("Case %v, workspace type %v, unexpected result", c, wl)
}
}
}
}