Files
gonum/lapack/native/dsytd2.go
2017-05-23 00:03:03 -06:00

124 lines
3.9 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dsytd2 reduces a symmetric n×n matrix A to symmetric tridiagonal form T by an
// orthogonal similarity transformation
// Q^T * A * Q = T
// On entry, the matrix is contained in the specified triangle of a. On exit,
// if uplo == blas.Upper, the diagonal and first super-diagonal of a are
// overwritten with the elements of T. The elements above the first super-diagonal
// are overwritten with the the elementary reflectors that are used with the
// elements written to tau in order to construct Q. If uplo == blas.Lower, the
// elements are written in the lower triangular region.
//
// d must have length at least n. e and tau must have length at least n-1. Dsytd2
// will panic if these sizes are not met.
//
// Q is represented as a product of elementary reflectors.
// If uplo == blas.Upper
// Q = H_{n-2} * ... * H_1 * H_0
// and if uplo == blas.Lower
// Q = H_0 * H_1 * ... * H_{n-2}
// where
// H_i = I - tau * v * v^T
// where tau is stored in tau[i], and v is stored in a.
//
// If uplo == blas.Upper, v[0:i-1] is stored in A[0:i-1,i+1], v[i] = 1, and
// v[i+1:] = 0. The elements of a are
// [ d e v2 v3 v4]
// [ d e v3 v4]
// [ d e v4]
// [ d e]
// [ d]
// If uplo == blas.Lower, v[0:i+1] = 0, v[i+1] = 1, and v[i+2:] is stored in
// A[i+2:n,i].
// The elements of a are
// [ d ]
// [ e d ]
// [v1 e d ]
// [v1 v2 e d ]
// [v1 v2 v3 e d]
//
// Dsytd2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dsytd2(uplo blas.Uplo, n int, a []float64, lda int, d, e, tau []float64) {
checkMatrix(n, n, a, lda)
if len(d) < n {
panic(badD)
}
if len(e) < n-1 {
panic(badE)
}
if len(tau) < n-1 {
panic(badTau)
}
if n <= 0 {
return
}
bi := blas64.Implementation()
if uplo == blas.Upper {
// Reduce the upper triangle of A.
for i := n - 2; i >= 0; i-- {
// Generate elementary reflector H_i = I - tau * v * v^T to
// annihilate A[i:i-1, i+1].
var taui float64
a[i*lda+i+1], taui = impl.Dlarfg(i+1, a[i*lda+i+1], a[i+1:], lda)
e[i] = a[i*lda+i+1]
if taui != 0 {
// Apply H_i from both sides to A[0:i,0:i].
a[i*lda+i+1] = 1
// Compute x := tau * A * v storing x in tau[0:i].
bi.Dsymv(uplo, i+1, taui, a, lda, a[i+1:], lda, 0, tau, 1)
// Compute w := x - 1/2 * tau * (x^T * v) * v.
alpha := -0.5 * taui * bi.Ddot(i+1, tau, 1, a[i+1:], lda)
bi.Daxpy(i+1, alpha, a[i+1:], lda, tau, 1)
// Apply the transformation as a rank-2 update
// A = A - v * w^T - w * v^T.
bi.Dsyr2(uplo, i+1, -1, a[i+1:], lda, tau, 1, a, lda)
a[i*lda+i+1] = e[i]
}
d[i+1] = a[(i+1)*lda+i+1]
tau[i] = taui
}
d[0] = a[0]
return
}
// Reduce the lower triangle of A.
for i := 0; i < n-1; i++ {
// Generate elementary reflector H_i = I - tau * v * v^T to
// annihilate A[i+2:n, i].
var taui float64
a[(i+1)*lda+i], taui = impl.Dlarfg(n-i-1, a[(i+1)*lda+i], a[min(i+2, n-1)*lda+i:], lda)
e[i] = a[(i+1)*lda+i]
if taui != 0 {
// Apply H_i from both sides to A[i+1:n, i+1:n].
a[(i+1)*lda+i] = 1
// Compute x := tau * A * v, storing y in tau[i:n-1].
bi.Dsymv(uplo, n-i-1, taui, a[(i+1)*lda+i+1:], lda, a[(i+1)*lda+i:], lda, 0, tau[i:], 1)
// Compute w := x - 1/2 * tau * (x^T * v) * v.
alpha := -0.5 * taui * bi.Ddot(n-i-1, tau[i:], 1, a[(i+1)*lda+i:], lda)
bi.Daxpy(n-i-1, alpha, a[(i+1)*lda+i:], lda, tau[i:], 1)
// Apply the transformation as a rank-2 update
// A = A - v * w^T - w * v^T.
bi.Dsyr2(uplo, n-i-1, -1, a[(i+1)*lda+i:], lda, tau[i:], 1, a[(i+1)*lda+i+1:], lda)
a[(i+1)*lda+i] = e[i]
}
d[i] = a[i*lda+i]
tau[i] = taui
}
d[n-1] = a[(n-1)*lda+n-1]
}