Files
gonum/lapack/native/dorm2r.go
2017-05-23 00:03:03 -06:00

89 lines
2.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import "gonum.org/v1/gonum/blas"
// Dorm2r multiplies a general matrix C by an orthogonal matrix from a QR factorization
// determined by Dgeqrf.
// C = Q * C if side == blas.Left and trans == blas.NoTrans
// C = Q^T * C if side == blas.Left and trans == blas.Trans
// C = C * Q if side == blas.Right and trans == blas.NoTrans
// C = C * Q^T if side == blas.Right and trans == blas.Trans
// If side == blas.Left, a is a matrix of size m×k, and if side == blas.Right
// a is of size n×k.
//
// tau contains the Householder factors and is of length at least k and this function
// will panic otherwise.
//
// work is temporary storage of length at least n if side == blas.Left
// and at least m if side == blas.Right and this function will panic otherwise.
//
// Dorm2r is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dorm2r(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) {
if side != blas.Left && side != blas.Right {
panic(badSide)
}
if trans != blas.Trans && trans != blas.NoTrans {
panic(badTrans)
}
left := side == blas.Left
notran := trans == blas.NoTrans
if left {
// Q is m x m
checkMatrix(m, k, a, lda)
if len(work) < n {
panic(badWork)
}
} else {
// Q is n x n
checkMatrix(n, k, a, lda)
if len(work) < m {
panic(badWork)
}
}
checkMatrix(m, n, c, ldc)
if m == 0 || n == 0 || k == 0 {
return
}
if len(tau) < k {
panic(badTau)
}
if left {
if notran {
for i := k - 1; i >= 0; i-- {
aii := a[i*lda+i]
a[i*lda+i] = 1
impl.Dlarf(side, m-i, n, a[i*lda+i:], lda, tau[i], c[i*ldc:], ldc, work)
a[i*lda+i] = aii
}
return
}
for i := 0; i < k; i++ {
aii := a[i*lda+i]
a[i*lda+i] = 1
impl.Dlarf(side, m-i, n, a[i*lda+i:], lda, tau[i], c[i*ldc:], ldc, work)
a[i*lda+i] = aii
}
return
}
if notran {
for i := 0; i < k; i++ {
aii := a[i*lda+i]
a[i*lda+i] = 1
impl.Dlarf(side, m, n-i, a[i*lda+i:], lda, tau[i], c[i:], ldc, work)
a[i*lda+i] = aii
}
return
}
for i := k - 1; i >= 0; i-- {
aii := a[i*lda+i]
a[i*lda+i] = 1
impl.Dlarf(side, m, n-i, a[i*lda+i:], lda, tau[i], c[i:], ldc, work)
a[i*lda+i] = aii
}
}