mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
100 lines
2.8 KiB
Go
100 lines
2.8 KiB
Go
// Copyright ©2016 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package native
|
|
|
|
import "gonum.org/v1/gonum/blas"
|
|
|
|
// Dorgtr generates a real orthogonal matrix Q which is defined as the product
|
|
// of n-1 elementary reflectors of order n as returned by Dsytrd.
|
|
//
|
|
// The construction of Q depends on the value of uplo:
|
|
// Q = H_{n-1} * ... * H_1 * H_0 if uplo == blas.Upper
|
|
// Q = H_0 * H_1 * ... * H_{n-1} if uplo == blas.Lower
|
|
// where H_i is constructed from the elementary reflectors as computed by Dsytrd.
|
|
// See the documentation for Dsytrd for more information.
|
|
//
|
|
// tau must have length at least n-1, and Dorgtr will panic otherwise.
|
|
//
|
|
// work is temporary storage, and lwork specifies the usable memory length. At
|
|
// minimum, lwork >= max(1,n-1), and Dorgtr will panic otherwise. The amount of blocking
|
|
// is limited by the usable length.
|
|
// If lwork == -1, instead of computing Dorgtr the optimal work length is stored
|
|
// into work[0].
|
|
//
|
|
// Dorgtr is an internal routine. It is exported for testing purposes.
|
|
func (impl Implementation) Dorgtr(uplo blas.Uplo, n int, a []float64, lda int, tau, work []float64, lwork int) {
|
|
checkMatrix(n, n, a, lda)
|
|
if len(tau) < n-1 {
|
|
panic(badTau)
|
|
}
|
|
if len(work) < lwork {
|
|
panic(badWork)
|
|
}
|
|
if lwork < n-1 && lwork != -1 {
|
|
panic(badWork)
|
|
}
|
|
upper := uplo == blas.Upper
|
|
if !upper && uplo != blas.Lower {
|
|
panic(badUplo)
|
|
}
|
|
|
|
if n == 0 {
|
|
work[0] = 1
|
|
return
|
|
}
|
|
|
|
var nb int
|
|
if upper {
|
|
nb = impl.Ilaenv(1, "DORGQL", " ", n-1, n-1, n-1, -1)
|
|
} else {
|
|
nb = impl.Ilaenv(1, "DORGQR", " ", n-1, n-1, n-1, -1)
|
|
}
|
|
lworkopt := max(1, n-1) * nb
|
|
if lwork == -1 {
|
|
work[0] = float64(lworkopt)
|
|
return
|
|
}
|
|
|
|
if upper {
|
|
// Q was determined by a call to Dsytrd with uplo == blas.Upper.
|
|
// Shift the vectors which define the elementary reflectors one column
|
|
// to the left, and set the last row and column of Q to those of the unit
|
|
// matrix.
|
|
for j := 0; j < n-1; j++ {
|
|
for i := 0; i < j; i++ {
|
|
a[i*lda+j] = a[i*lda+j+1]
|
|
}
|
|
a[(n-1)*lda+j] = 0
|
|
}
|
|
for i := 0; i < n-1; i++ {
|
|
a[i*lda+n-1] = 0
|
|
}
|
|
a[(n-1)*lda+n-1] = 1
|
|
|
|
// Generate Q[0:n-1, 0:n-1].
|
|
impl.Dorgql(n-1, n-1, n-1, a, lda, tau, work, lwork)
|
|
} else {
|
|
// Q was determined by a call to Dsytrd with uplo == blas.Upper.
|
|
// Shift the vectors which define the elementary reflectors one column
|
|
// to the right, and set the first row and column of Q to those of the unit
|
|
// matrix.
|
|
for j := n - 1; j > 0; j-- {
|
|
a[j] = 0
|
|
for i := j + 1; i < n; i++ {
|
|
a[i*lda+j] = a[i*lda+j-1]
|
|
}
|
|
}
|
|
a[0] = 1
|
|
for i := 1; i < n; i++ {
|
|
a[i*lda] = 0
|
|
}
|
|
if n > 1 {
|
|
// Generate Q[1:n, 1:n].
|
|
impl.Dorgqr(n-1, n-1, n-1, a[lda+1:], lda, tau, work, lwork)
|
|
}
|
|
}
|
|
work[0] = float64(lworkopt)
|
|
}
|