Files
gonum/lapack/native/dorghr.go
2017-05-23 00:02:46 -06:00

94 lines
2.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
// Dorghr generates an n×n orthogonal matrix Q which is defined as the product
// of ihi-ilo elementary reflectors:
// Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
//
// a and lda represent an n×n matrix that contains the elementary reflectors, as
// returned by Dgehrd. On return, a is overwritten by the n×n orthogonal matrix
// Q. Q will be equal to the identity matrix except in the submatrix
// Q[ilo+1:ihi+1,ilo+1:ihi+1].
//
// ilo and ihi must have the same values as in the previous call of Dgehrd. It
// must hold that
// 0 <= ilo <= ihi < n, if n > 0,
// ilo = 0, ihi = -1, if n == 0.
//
// tau contains the scalar factors of the elementary reflectors, as returned by
// Dgehrd. tau must have length n-1.
//
// work must have length at least max(1,lwork) and lwork must be at least
// ihi-ilo. For optimum performance lwork must be at least (ihi-ilo)*nb where nb
// is the optimal blocksize. On return, work[0] will contain the optimal value
// of lwork.
//
// If lwork == -1, instead of performing Dorghr, only the optimal value of lwork
// will be stored into work[0].
//
// If any requirement on input sizes is not met, Dorghr will panic.
//
// Dorghr is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dorghr(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) {
checkMatrix(n, n, a, lda)
nh := ihi - ilo
switch {
case ilo < 0 || max(1, n) <= ilo:
panic(badIlo)
case ihi < min(ilo, n-1) || n <= ihi:
panic(badIhi)
case lwork < max(1, nh) && lwork != -1:
panic(badWork)
case len(work) < max(1, lwork):
panic(shortWork)
}
lwkopt := max(1, nh) * impl.Ilaenv(1, "DORGQR", " ", nh, nh, nh, -1)
if lwork == -1 {
work[0] = float64(lwkopt)
return
}
// Quick return if possible.
if n == 0 {
work[0] = 1
return
}
// Shift the vectors which define the elementary reflectors one column
// to the right.
for i := ilo + 2; i < ihi+1; i++ {
copy(a[i*lda+ilo+1:i*lda+i], a[i*lda+ilo:i*lda+i-1])
}
// Set the first ilo+1 and the last n-ihi-1 rows and columns to those of
// the identity matrix.
for i := 0; i < ilo+1; i++ {
for j := 0; j < n; j++ {
a[i*lda+j] = 0
}
a[i*lda+i] = 1
}
for i := ilo + 1; i < ihi+1; i++ {
for j := 0; j <= ilo; j++ {
a[i*lda+j] = 0
}
for j := i; j < n; j++ {
a[i*lda+j] = 0
}
}
for i := ihi + 1; i < n; i++ {
for j := 0; j < n; j++ {
a[i*lda+j] = 0
}
a[i*lda+i] = 1
}
if nh > 0 {
// Generate Q[ilo+1:ihi+1,ilo+1:ihi+1].
impl.Dorgqr(nh, nh, nh, a[(ilo+1)*lda+ilo+1:], lda, tau[ilo:ihi], work, lwork)
}
work[0] = float64(lwkopt)
}