mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
94 lines
2.7 KiB
Go
94 lines
2.7 KiB
Go
// Copyright ©2016 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
// Dorghr generates an n×n orthogonal matrix Q which is defined as the product
|
||
// of ihi-ilo elementary reflectors:
|
||
// Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
|
||
//
|
||
// a and lda represent an n×n matrix that contains the elementary reflectors, as
|
||
// returned by Dgehrd. On return, a is overwritten by the n×n orthogonal matrix
|
||
// Q. Q will be equal to the identity matrix except in the submatrix
|
||
// Q[ilo+1:ihi+1,ilo+1:ihi+1].
|
||
//
|
||
// ilo and ihi must have the same values as in the previous call of Dgehrd. It
|
||
// must hold that
|
||
// 0 <= ilo <= ihi < n, if n > 0,
|
||
// ilo = 0, ihi = -1, if n == 0.
|
||
//
|
||
// tau contains the scalar factors of the elementary reflectors, as returned by
|
||
// Dgehrd. tau must have length n-1.
|
||
//
|
||
// work must have length at least max(1,lwork) and lwork must be at least
|
||
// ihi-ilo. For optimum performance lwork must be at least (ihi-ilo)*nb where nb
|
||
// is the optimal blocksize. On return, work[0] will contain the optimal value
|
||
// of lwork.
|
||
//
|
||
// If lwork == -1, instead of performing Dorghr, only the optimal value of lwork
|
||
// will be stored into work[0].
|
||
//
|
||
// If any requirement on input sizes is not met, Dorghr will panic.
|
||
//
|
||
// Dorghr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorghr(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
checkMatrix(n, n, a, lda)
|
||
nh := ihi - ilo
|
||
switch {
|
||
case ilo < 0 || max(1, n) <= ilo:
|
||
panic(badIlo)
|
||
case ihi < min(ilo, n-1) || n <= ihi:
|
||
panic(badIhi)
|
||
case lwork < max(1, nh) && lwork != -1:
|
||
panic(badWork)
|
||
case len(work) < max(1, lwork):
|
||
panic(shortWork)
|
||
}
|
||
|
||
lwkopt := max(1, nh) * impl.Ilaenv(1, "DORGQR", " ", nh, nh, nh, -1)
|
||
if lwork == -1 {
|
||
work[0] = float64(lwkopt)
|
||
return
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if n == 0 {
|
||
work[0] = 1
|
||
return
|
||
}
|
||
|
||
// Shift the vectors which define the elementary reflectors one column
|
||
// to the right.
|
||
for i := ilo + 2; i < ihi+1; i++ {
|
||
copy(a[i*lda+ilo+1:i*lda+i], a[i*lda+ilo:i*lda+i-1])
|
||
}
|
||
// Set the first ilo+1 and the last n-ihi-1 rows and columns to those of
|
||
// the identity matrix.
|
||
for i := 0; i < ilo+1; i++ {
|
||
for j := 0; j < n; j++ {
|
||
a[i*lda+j] = 0
|
||
}
|
||
a[i*lda+i] = 1
|
||
}
|
||
for i := ilo + 1; i < ihi+1; i++ {
|
||
for j := 0; j <= ilo; j++ {
|
||
a[i*lda+j] = 0
|
||
}
|
||
for j := i; j < n; j++ {
|
||
a[i*lda+j] = 0
|
||
}
|
||
}
|
||
for i := ihi + 1; i < n; i++ {
|
||
for j := 0; j < n; j++ {
|
||
a[i*lda+j] = 0
|
||
}
|
||
a[i*lda+i] = 1
|
||
}
|
||
if nh > 0 {
|
||
// Generate Q[ilo+1:ihi+1,ilo+1:ihi+1].
|
||
impl.Dorgqr(nh, nh, nh, a[(ilo+1)*lda+ilo+1:], lda, tau[ilo:ihi], work, lwork)
|
||
}
|
||
work[0] = float64(lwkopt)
|
||
}
|