Files
gonum/lapack/native/dlatrs.go
2017-05-23 00:03:03 -06:00

351 lines
7.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dlatrs solves a triangular system of equations scaled to prevent overflow. It
// solves
// A * x = scale * b if trans == blas.NoTrans
// A^T * x = scale * b if trans == blas.Trans
// where the scale s is set for numeric stability.
//
// A is an n×n triangular matrix. On entry, the slice x contains the values of
// of b, and on exit it contains the solution vector x.
//
// If normin == true, cnorm is an input and cnorm[j] contains the norm of the off-diagonal
// part of the j^th column of A. If trans == blas.NoTrans, cnorm[j] must be greater
// than or equal to the infinity norm, and greater than or equal to the one-norm
// otherwise. If normin == false, then cnorm is treated as an output, and is set
// to contain the 1-norm of the off-diagonal part of the j^th column of A.
//
// Dlatrs is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlatrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, normin bool, n int, a []float64, lda int, x []float64, cnorm []float64) (scale float64) {
if uplo != blas.Upper && uplo != blas.Lower {
panic(badUplo)
}
if trans != blas.Trans && trans != blas.NoTrans {
panic(badTrans)
}
if diag != blas.Unit && diag != blas.NonUnit {
panic(badDiag)
}
upper := uplo == blas.Upper
noTrans := trans == blas.NoTrans
nonUnit := diag == blas.NonUnit
if n < 0 {
panic(nLT0)
}
checkMatrix(n, n, a, lda)
checkVector(n, x, 1)
checkVector(n, cnorm, 1)
if n == 0 {
return 0
}
smlnum := dlamchS / dlamchP
bignum := 1 / smlnum
scale = 1
bi := blas64.Implementation()
if !normin {
if upper {
cnorm[0] = 0
for j := 1; j < n; j++ {
cnorm[j] = bi.Dasum(j, a[j:], lda)
}
} else {
for j := 0; j < n-1; j++ {
cnorm[j] = bi.Dasum(n-j-1, a[(j+1)*lda+j:], lda)
}
cnorm[n-1] = 0
}
}
// Scale the column norms by tscal if the maximum element in cnorm is greater than bignum.
imax := bi.Idamax(n, cnorm, 1)
tmax := cnorm[imax]
var tscal float64
if tmax <= bignum {
tscal = 1
} else {
tscal = 1 / (smlnum * tmax)
bi.Dscal(n, tscal, cnorm, 1)
}
// Compute a bound on the computed solution vector to see if bi.Dtrsv can be used.
j := bi.Idamax(n, x, 1)
xmax := math.Abs(x[j])
xbnd := xmax
var grow float64
var jfirst, jlast, jinc int
if noTrans {
if upper {
jfirst = n - 1
jlast = -1
jinc = -1
} else {
jfirst = 0
jlast = n
jinc = 1
}
// Compute the growth in A * x = b.
if tscal != 1 {
grow = 0
goto Solve
}
if nonUnit {
grow = 1 / math.Max(xbnd, smlnum)
xbnd = grow
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Solve
}
tjj := math.Abs(a[j*lda+j])
xbnd = math.Min(xbnd, math.Min(1, tjj)*grow)
if tjj+cnorm[j] >= smlnum {
grow *= tjj / (tjj + cnorm[j])
} else {
grow = 0
}
}
grow = xbnd
} else {
grow = math.Min(1, 1/math.Max(xbnd, smlnum))
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Solve
}
grow *= 1 / (1 + cnorm[j])
}
}
} else {
if upper {
jfirst = 0
jlast = n
jinc = 1
} else {
jfirst = n - 1
jlast = -1
jinc = -1
}
if tscal != 1 {
grow = 0
goto Solve
}
if nonUnit {
grow = 1 / (math.Max(xbnd, smlnum))
xbnd = grow
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Solve
}
xj := 1 + cnorm[j]
grow = math.Min(grow, xbnd/xj)
tjj := math.Abs(a[j*lda+j])
if xj > tjj {
xbnd *= tjj / xj
}
}
grow = math.Min(grow, xbnd)
} else {
grow = math.Min(1, 1/math.Max(xbnd, smlnum))
for j := jfirst; j != jlast; j += jinc {
if grow <= smlnum {
goto Solve
}
xj := 1 + cnorm[j]
grow /= xj
}
}
}
Solve:
if grow*tscal > smlnum {
// Use the Level 2 BLAS solve if the reciprocal of the bound on
// elements of X is not too small.
bi.Dtrsv(uplo, trans, diag, n, a, lda, x, 1)
if tscal != 1 {
bi.Dscal(n, 1/tscal, cnorm, 1)
}
return scale
}
// Use a Level 1 BLAS solve, scaling intermediate results.
if xmax > bignum {
scale = bignum / xmax
bi.Dscal(n, scale, x, 1)
xmax = bignum
}
if noTrans {
for j := jfirst; j != jlast; j += jinc {
xj := math.Abs(x[j])
var tjj, tjjs float64
if nonUnit {
tjjs = a[j*lda+j] * tscal
} else {
tjjs = tscal
if tscal == 1 {
goto Skip1
}
}
tjj = math.Abs(tjjs)
if tjj > smlnum {
if tjj < 1 {
if xj > tjj*bignum {
rec := 1 / xj
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
}
x[j] /= tjjs
xj = math.Abs(x[j])
} else if tjj > 0 {
if xj > tjj*bignum {
rec := (tjj * bignum) / xj
if cnorm[j] > 1 {
rec /= cnorm[j]
}
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
x[j] /= tjjs
xj = math.Abs(x[j])
} else {
for i := 0; i < n; i++ {
x[i] = 0
}
x[j] = 1
xj = 1
scale = 0
xmax = 0
}
Skip1:
if xj > 1 {
rec := 1 / xj
if cnorm[j] > (bignum-xmax)*rec {
rec *= 0.5
bi.Dscal(n, rec, x, 1)
scale *= rec
}
} else if xj*cnorm[j] > bignum-xmax {
bi.Dscal(n, 0.5, x, 1)
scale *= 0.5
}
if upper {
if j > 0 {
bi.Daxpy(j, -x[j]*tscal, a[j:], lda, x, 1)
i := bi.Idamax(j, x, 1)
xmax = math.Abs(x[i])
}
} else {
if j < n-1 {
bi.Daxpy(n-j-1, -x[j]*tscal, a[(j+1)*lda+j:], lda, x[j+1:], 1)
i := j + bi.Idamax(n-j-1, x[j+1:], 1)
xmax = math.Abs(x[i])
}
}
}
} else {
for j := jfirst; j != jlast; j += jinc {
xj := math.Abs(x[j])
uscal := tscal
rec := 1 / math.Max(xmax, 1)
var tjjs float64
if cnorm[j] > (bignum-xj)*rec {
rec *= 0.5
if nonUnit {
tjjs = a[j*lda+j] * tscal
} else {
tjjs = tscal
}
tjj := math.Abs(tjjs)
if tjj > 1 {
rec = math.Min(1, rec*tjj)
uscal /= tjjs
}
if rec < 1 {
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
}
var sumj float64
if uscal == 1 {
if upper {
sumj = bi.Ddot(j, a[j:], lda, x, 1)
} else if j < n-1 {
sumj = bi.Ddot(n-j-1, a[(j+1)*lda+j:], lda, x[j+1:], 1)
}
} else {
if upper {
for i := 0; i < j; i++ {
sumj += (a[i*lda+j] * uscal) * x[i]
}
} else if j < n {
for i := j + 1; i < n; i++ {
sumj += (a[i*lda+j] * uscal) * x[i]
}
}
}
if uscal == tscal {
x[j] -= sumj
xj := math.Abs(x[j])
var tjjs float64
if nonUnit {
tjjs = a[j*lda+j] * tscal
} else {
tjjs = tscal
if tscal == 1 {
goto Skip2
}
}
tjj := math.Abs(tjjs)
if tjj > smlnum {
if tjj < 1 {
if xj > tjj*bignum {
rec = 1 / xj
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
}
x[j] /= tjjs
} else if tjj > 0 {
if xj > tjj*bignum {
rec = (tjj * bignum) / xj
bi.Dscal(n, rec, x, 1)
scale *= rec
xmax *= rec
}
x[j] /= tjjs
} else {
for i := 0; i < n; i++ {
x[i] = 0
}
x[j] = 1
scale = 0
xmax = 0
}
} else {
x[j] = x[j]/tjjs - sumj
}
Skip2:
xmax = math.Max(xmax, math.Abs(x[j]))
}
}
scale /= tscal
if tscal != 1 {
bi.Dscal(n, 1/tscal, cnorm, 1)
}
return scale
}