mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
291 lines
8.3 KiB
Go
291 lines
8.3 KiB
Go
// Copyright ©2016 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
// Dlasy2 solves the Sylvester matrix equation where the matrices are of order 1
|
||
// or 2. It computes the unknown n1×n2 matrix X so that
|
||
// TL*X + sgn*X*TR = scale*B, if tranl == false and tranr == false,
|
||
// TL^T*X + sgn*X*TR = scale*B, if tranl == true and tranr == false,
|
||
// TL*X + sgn*X*TR^T = scale*B, if tranl == false and tranr == true,
|
||
// TL^T*X + sgn*X*TR^T = scale*B, if tranl == true and tranr == true,
|
||
// where TL is n1×n1, TR is n2×n2, B is n1×n2, and 1 <= n1,n2 <= 2.
|
||
//
|
||
// isgn must be 1 or -1, and n1 and n2 must be 0, 1, or 2, but these conditions
|
||
// are not checked.
|
||
//
|
||
// Dlasy2 returns three values, a scale factor that is chosen less than or equal
|
||
// to 1 to prevent the solution overflowing, the infinity norm of the solution,
|
||
// and an indicator of success. If ok is false, TL and TR have eigenvalues that
|
||
// are too close, so TL or TR is perturbed to get a non-singular equation.
|
||
//
|
||
// Dlasy2 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlasy2(tranl, tranr bool, isgn, n1, n2 int, tl []float64, ldtl int, tr []float64, ldtr int, b []float64, ldb int, x []float64, ldx int) (scale, xnorm float64, ok bool) {
|
||
// TODO(vladimir-ch): Add input validation checks conditionally skipped
|
||
// using the build tag mechanism.
|
||
|
||
ok = true
|
||
// Quick return if possible.
|
||
if n1 == 0 || n2 == 0 {
|
||
return scale, xnorm, ok
|
||
}
|
||
|
||
// Set constants to control overflow.
|
||
eps := dlamchP
|
||
smlnum := dlamchS / eps
|
||
sgn := float64(isgn)
|
||
|
||
if n1 == 1 && n2 == 1 {
|
||
// 1×1 case: TL11*X + sgn*X*TR11 = B11.
|
||
tau1 := tl[0] + sgn*tr[0]
|
||
bet := math.Abs(tau1)
|
||
if bet <= smlnum {
|
||
tau1 = smlnum
|
||
bet = smlnum
|
||
ok = false
|
||
}
|
||
scale = 1
|
||
gam := math.Abs(b[0])
|
||
if smlnum*gam > bet {
|
||
scale = 1 / gam
|
||
}
|
||
x[0] = b[0] * scale / tau1
|
||
xnorm = math.Abs(x[0])
|
||
return scale, xnorm, ok
|
||
}
|
||
|
||
if n1+n2 == 3 {
|
||
// 1×2 or 2×1 case.
|
||
var (
|
||
smin float64
|
||
tmp [4]float64 // tmp is used as a 2×2 row-major matrix.
|
||
btmp [2]float64
|
||
)
|
||
if n1 == 1 && n2 == 2 {
|
||
// 1×2 case: TL11*[X11 X12] + sgn*[X11 X12]*op[TR11 TR12] = [B11 B12].
|
||
// [TR21 TR22]
|
||
smin = math.Abs(tl[0])
|
||
smin = math.Max(smin, math.Max(math.Abs(tr[0]), math.Abs(tr[1])))
|
||
smin = math.Max(smin, math.Max(math.Abs(tr[ldtr]), math.Abs(tr[ldtr+1])))
|
||
smin = math.Max(eps*smin, smlnum)
|
||
tmp[0] = tl[0] + sgn*tr[0]
|
||
tmp[3] = tl[0] + sgn*tr[ldtr+1]
|
||
if tranr {
|
||
tmp[1] = sgn * tr[1]
|
||
tmp[2] = sgn * tr[ldtr]
|
||
} else {
|
||
tmp[1] = sgn * tr[ldtr]
|
||
tmp[2] = sgn * tr[1]
|
||
}
|
||
btmp[0] = b[0]
|
||
btmp[1] = b[1]
|
||
} else {
|
||
// 2×1 case: op[TL11 TL12]*[X11] + sgn*[X11]*TR11 = [B11].
|
||
// [TL21 TL22]*[X21] [X21] [B21]
|
||
smin = math.Abs(tr[0])
|
||
smin = math.Max(smin, math.Max(math.Abs(tl[0]), math.Abs(tl[1])))
|
||
smin = math.Max(smin, math.Max(math.Abs(tl[ldtl]), math.Abs(tl[ldtl+1])))
|
||
smin = math.Max(eps*smin, smlnum)
|
||
tmp[0] = tl[0] + sgn*tr[0]
|
||
tmp[3] = tl[ldtl+1] + sgn*tr[0]
|
||
if tranl {
|
||
tmp[1] = tl[ldtl]
|
||
tmp[2] = tl[1]
|
||
} else {
|
||
tmp[1] = tl[1]
|
||
tmp[2] = tl[ldtl]
|
||
}
|
||
btmp[0] = b[0]
|
||
btmp[1] = b[ldb]
|
||
}
|
||
|
||
// Solve 2×2 system using complete pivoting.
|
||
// Set pivots less than smin to smin.
|
||
|
||
bi := blas64.Implementation()
|
||
ipiv := bi.Idamax(len(tmp), tmp[:], 1)
|
||
// Compute the upper triangular matrix [u11 u12].
|
||
// [ 0 u22]
|
||
u11 := tmp[ipiv]
|
||
if math.Abs(u11) <= smin {
|
||
ok = false
|
||
u11 = smin
|
||
}
|
||
locu12 := [4]int{1, 0, 3, 2} // Index in tmp of the element on the same row as the pivot.
|
||
u12 := tmp[locu12[ipiv]]
|
||
locl21 := [4]int{2, 3, 0, 1} // Index in tmp of the element on the same column as the pivot.
|
||
l21 := tmp[locl21[ipiv]] / u11
|
||
locu22 := [4]int{3, 2, 1, 0} // Index in tmp of the remaining element.
|
||
u22 := tmp[locu22[ipiv]] - l21*u12
|
||
if math.Abs(u22) <= smin {
|
||
ok = false
|
||
u22 = smin
|
||
}
|
||
if ipiv&0x2 != 0 { // true for ipiv equal to 2 and 3.
|
||
// The pivot was in the second row, swap the elements of
|
||
// the right-hand side.
|
||
btmp[0], btmp[1] = btmp[1], btmp[0]-l21*btmp[1]
|
||
} else {
|
||
btmp[1] -= l21 * btmp[0]
|
||
}
|
||
scale = 1
|
||
if 2*smlnum*math.Abs(btmp[1]) > math.Abs(u22) || 2*smlnum*math.Abs(btmp[0]) > math.Abs(u11) {
|
||
scale = 0.5 / math.Max(math.Abs(btmp[0]), math.Abs(btmp[1]))
|
||
btmp[0] *= scale
|
||
btmp[1] *= scale
|
||
}
|
||
// Solve the system [u11 u12] [x21] = [ btmp[0] ].
|
||
// [ 0 u22] [x22] [ btmp[1] ]
|
||
x22 := btmp[1] / u22
|
||
x21 := btmp[0]/u11 - (u12/u11)*x22
|
||
if ipiv&0x1 != 0 { // true for ipiv equal to 1 and 3.
|
||
// The pivot was in the second column, swap the elements
|
||
// of the solution.
|
||
x21, x22 = x22, x21
|
||
}
|
||
x[0] = x21
|
||
if n1 == 1 {
|
||
x[1] = x22
|
||
xnorm = math.Abs(x[0]) + math.Abs(x[1])
|
||
} else {
|
||
x[ldx] = x22
|
||
xnorm = math.Max(math.Abs(x[0]), math.Abs(x[ldx]))
|
||
}
|
||
return scale, xnorm, ok
|
||
}
|
||
|
||
// 2×2 case: op[TL11 TL12]*[X11 X12] + SGN*[X11 X12]*op[TR11 TR12] = [B11 B12].
|
||
// [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22]
|
||
//
|
||
// Solve equivalent 4×4 system using complete pivoting.
|
||
// Set pivots less than smin to smin.
|
||
|
||
smin := math.Max(math.Abs(tr[0]), math.Abs(tr[1]))
|
||
smin = math.Max(smin, math.Max(math.Abs(tr[ldtr]), math.Abs(tr[ldtr+1])))
|
||
smin = math.Max(smin, math.Max(math.Abs(tl[0]), math.Abs(tl[1])))
|
||
smin = math.Max(smin, math.Max(math.Abs(tl[ldtl]), math.Abs(tl[ldtl+1])))
|
||
smin = math.Max(eps*smin, smlnum)
|
||
|
||
var t [4][4]float64
|
||
t[0][0] = tl[0] + sgn*tr[0]
|
||
t[1][1] = tl[0] + sgn*tr[ldtr+1]
|
||
t[2][2] = tl[ldtl+1] + sgn*tr[0]
|
||
t[3][3] = tl[ldtl+1] + sgn*tr[ldtr+1]
|
||
if tranl {
|
||
t[0][2] = tl[ldtl]
|
||
t[1][3] = tl[ldtl]
|
||
t[2][0] = tl[1]
|
||
t[3][1] = tl[1]
|
||
} else {
|
||
t[0][2] = tl[1]
|
||
t[1][3] = tl[1]
|
||
t[2][0] = tl[ldtl]
|
||
t[3][1] = tl[ldtl]
|
||
}
|
||
if tranr {
|
||
t[0][1] = sgn * tr[1]
|
||
t[1][0] = sgn * tr[ldtr]
|
||
t[2][3] = sgn * tr[1]
|
||
t[3][2] = sgn * tr[ldtr]
|
||
} else {
|
||
t[0][1] = sgn * tr[ldtr]
|
||
t[1][0] = sgn * tr[1]
|
||
t[2][3] = sgn * tr[ldtr]
|
||
t[3][2] = sgn * tr[1]
|
||
}
|
||
|
||
var btmp [4]float64
|
||
btmp[0] = b[0]
|
||
btmp[1] = b[1]
|
||
btmp[2] = b[ldb]
|
||
btmp[3] = b[ldb+1]
|
||
|
||
// Perform elimination.
|
||
var jpiv [4]int // jpiv records any column swaps for pivoting.
|
||
for i := 0; i < 3; i++ {
|
||
var (
|
||
xmax float64
|
||
ipsv, jpsv int
|
||
)
|
||
for ip := i; ip < 4; ip++ {
|
||
for jp := i; jp < 4; jp++ {
|
||
if math.Abs(t[ip][jp]) >= xmax {
|
||
xmax = math.Abs(t[ip][jp])
|
||
ipsv = ip
|
||
jpsv = jp
|
||
}
|
||
}
|
||
}
|
||
if ipsv != i {
|
||
// The pivot is not in the top row of the unprocessed
|
||
// block, swap rows ipsv and i of t and btmp.
|
||
t[ipsv], t[i] = t[i], t[ipsv]
|
||
btmp[ipsv], btmp[i] = btmp[i], btmp[ipsv]
|
||
}
|
||
if jpsv != i {
|
||
// The pivot is not in the left column of the
|
||
// unprocessed block, swap columns jpsv and i of t.
|
||
for k := 0; k < 4; k++ {
|
||
t[k][jpsv], t[k][i] = t[k][i], t[k][jpsv]
|
||
}
|
||
}
|
||
jpiv[i] = jpsv
|
||
if math.Abs(t[i][i]) < smin {
|
||
ok = false
|
||
t[i][i] = smin
|
||
}
|
||
for k := i + 1; k < 4; k++ {
|
||
t[k][i] /= t[i][i]
|
||
btmp[k] -= t[k][i] * btmp[i]
|
||
for j := i + 1; j < 4; j++ {
|
||
t[k][j] -= t[k][i] * t[i][j]
|
||
}
|
||
}
|
||
}
|
||
if math.Abs(t[3][3]) < smin {
|
||
ok = false
|
||
t[3][3] = smin
|
||
}
|
||
scale = 1
|
||
if 8*smlnum*math.Abs(btmp[0]) > math.Abs(t[0][0]) ||
|
||
8*smlnum*math.Abs(btmp[1]) > math.Abs(t[1][1]) ||
|
||
8*smlnum*math.Abs(btmp[2]) > math.Abs(t[2][2]) ||
|
||
8*smlnum*math.Abs(btmp[3]) > math.Abs(t[3][3]) {
|
||
|
||
maxbtmp := math.Max(math.Abs(btmp[0]), math.Abs(btmp[1]))
|
||
maxbtmp = math.Max(maxbtmp, math.Max(math.Abs(btmp[2]), math.Abs(btmp[3])))
|
||
scale = 1 / 8 / maxbtmp
|
||
btmp[0] *= scale
|
||
btmp[1] *= scale
|
||
btmp[2] *= scale
|
||
btmp[3] *= scale
|
||
}
|
||
// Compute the solution of the upper triangular system t * tmp = btmp.
|
||
var tmp [4]float64
|
||
for i := 3; i >= 0; i-- {
|
||
temp := 1 / t[i][i]
|
||
tmp[i] = btmp[i] * temp
|
||
for j := i + 1; j < 4; j++ {
|
||
tmp[i] -= temp * t[i][j] * tmp[j]
|
||
}
|
||
}
|
||
for i := 2; i >= 0; i-- {
|
||
if jpiv[i] != i {
|
||
tmp[i], tmp[jpiv[i]] = tmp[jpiv[i]], tmp[i]
|
||
}
|
||
}
|
||
x[0] = tmp[0]
|
||
x[1] = tmp[1]
|
||
x[ldx] = tmp[2]
|
||
x[ldx+1] = tmp[3]
|
||
xnorm = math.Max(math.Abs(tmp[0])+math.Abs(tmp[1]), math.Abs(tmp[2])+math.Abs(tmp[3]))
|
||
return scale, xnorm, ok
|
||
}
|