mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
98 lines
2.5 KiB
Go
98 lines
2.5 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
"gonum.org/v1/gonum/lapack"
|
||
)
|
||
|
||
// Dlasq1 computes the singular values of an n×n bidiagonal matrix with diagonal
|
||
// d and off-diagonal e. On exit, d contains the singular values in decreasing
|
||
// order, and e is overwritten. d must have length at least n, e must have
|
||
// length at least n-1, and the input work must have length at least 4*n. Dlasq1
|
||
// will panic if these conditions are not met.
|
||
//
|
||
// Dlasq1 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlasq1(n int, d, e, work []float64) (info int) {
|
||
// TODO(btracey): replace info with an error.
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if len(work) < 4*n {
|
||
panic(badWork)
|
||
}
|
||
if len(d) < n {
|
||
panic("lapack: length of d less than n")
|
||
}
|
||
if len(e) < n-1 {
|
||
panic("lapack: length of e less than n-1")
|
||
}
|
||
if n == 0 {
|
||
return info
|
||
}
|
||
if n == 1 {
|
||
d[0] = math.Abs(d[0])
|
||
return info
|
||
}
|
||
if n == 2 {
|
||
d[1], d[0] = impl.Dlas2(d[0], e[0], d[1])
|
||
return info
|
||
}
|
||
// Estimate the largest singular value.
|
||
var sigmx float64
|
||
for i := 0; i < n-1; i++ {
|
||
d[i] = math.Abs(d[i])
|
||
sigmx = math.Max(sigmx, math.Abs(e[i]))
|
||
}
|
||
d[n-1] = math.Abs(d[n-1])
|
||
// Early return if sigmx is zero (matrix is already diagonal).
|
||
if sigmx == 0 {
|
||
impl.Dlasrt(lapack.SortDecreasing, n, d)
|
||
return info
|
||
}
|
||
|
||
for i := 0; i < n; i++ {
|
||
sigmx = math.Max(sigmx, d[i])
|
||
}
|
||
|
||
// Copy D and E into WORK (in the Z format) and scale (squaring the
|
||
// input data makes scaling by a power of the radix pointless).
|
||
|
||
eps := dlamchP
|
||
safmin := dlamchS
|
||
scale := math.Sqrt(eps / safmin)
|
||
bi := blas64.Implementation()
|
||
bi.Dcopy(n, d, 1, work, 2)
|
||
bi.Dcopy(n-1, e, 1, work[1:], 2)
|
||
impl.Dlascl(lapack.General, 0, 0, sigmx, scale, 2*n-1, 1, work, 1)
|
||
|
||
// Compute the q's and e's.
|
||
for i := 0; i < 2*n-1; i++ {
|
||
work[i] *= work[i]
|
||
}
|
||
work[2*n-1] = 0
|
||
|
||
info = impl.Dlasq2(n, work)
|
||
if info == 0 {
|
||
for i := 0; i < n; i++ {
|
||
d[i] = math.Sqrt(work[i])
|
||
}
|
||
impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, d, 1)
|
||
} else if info == 2 {
|
||
// Maximum number of iterations exceeded. Move data from work
|
||
// into D and E so the calling subroutine can try to finish.
|
||
for i := 0; i < n; i++ {
|
||
d[i] = math.Sqrt(work[2*i])
|
||
e[i] = math.Sqrt(work[2*i+1])
|
||
}
|
||
impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, d, 1)
|
||
impl.Dlascl(lapack.General, 0, 0, scale, sigmx, n, 1, e, 1)
|
||
}
|
||
return info
|
||
}
|