Files
gonum/lapack/native/dlahr2.go
2017-05-23 00:03:03 -06:00

170 lines
5.4 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
// Dlahr2 reduces the first nb columns of a real general n×(n-k+1) matrix A so
// that elements below the k-th subdiagonal are zero. The reduction is performed
// by an orthogonal similarity transformation Q^T * A * Q. Dlahr2 returns the
// matrices V and T which determine Q as a block reflector I - V*T*V^T, and
// also the matrix Y = A * V * T.
//
// The matrix Q is represented as a product of nb elementary reflectors
// Q = H_0 * H_1 * ... * H_{nb-1}.
// Each H_i has the form
// H_i = I - tau[i] * v * v^T,
// where v is a real vector with v[0:i+k-1] = 0 and v[i+k-1] = 1. v[i+k:n] is
// stored on exit in A[i+k+1:n,i].
//
// The elements of the vectors v together form the (n-k+1)×nb matrix
// V which is needed, with T and Y, to apply the transformation to the
// unreduced part of the matrix, using an update of the form
// A = (I - V*T*V^T) * (A - Y*V^T).
//
// On entry, a contains the n×(n-k+1) general matrix A. On return, the elements
// on and above the k-th subdiagonal in the first nb columns are overwritten
// with the corresponding elements of the reduced matrix; the elements below the
// k-th subdiagonal, with the slice tau, represent the matrix Q as a product of
// elementary reflectors. The other columns of A are unchanged.
//
// The contents of A on exit are illustrated by the following example
// with n = 7, k = 3 and nb = 2:
// [ a a a a a ]
// [ a a a a a ]
// [ a a a a a ]
// [ h h a a a ]
// [ v0 h a a a ]
// [ v0 v1 a a a ]
// [ v0 v1 a a a ]
// where a denotes an element of the original matrix A, h denotes a
// modified element of the upper Hessenberg matrix H, and vi denotes an
// element of the vector defining H_i.
//
// k is the offset for the reduction. Elements below the k-th subdiagonal in the
// first nb columns are reduced to zero.
//
// nb is the number of columns to be reduced.
//
// On entry, a represents the n×(n-k+1) matrix A. On return, the elements on and
// above the k-th subdiagonal in the first nb columns are overwritten with the
// corresponding elements of the reduced matrix. The elements below the k-th
// subdiagonal, with the slice tau, represent the matrix Q as a product of
// elementary reflectors. The other columns of A are unchanged.
//
// tau will contain the scalar factors of the elementary reflectors. It must
// have length at least nb.
//
// t and ldt represent the nb×nb upper triangular matrix T, and y and ldy
// represent the n×nb matrix Y.
//
// Dlahr2 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dlahr2(n, k, nb int, a []float64, lda int, tau, t []float64, ldt int, y []float64, ldy int) {
checkMatrix(n, n-k+1, a, lda)
if len(tau) < nb {
panic(badTau)
}
checkMatrix(nb, nb, t, ldt)
checkMatrix(n, nb, y, ldy)
// Quick return if possible.
if n <= 1 {
return
}
bi := blas64.Implementation()
var ei float64
for i := 0; i < nb; i++ {
if i > 0 {
// Update A[k:n,i].
// Update i-th column of A - Y * V^T.
bi.Dgemv(blas.NoTrans, n-k, i,
-1, y[k*ldy:], ldy,
a[(k+i-1)*lda:], 1,
1, a[k*lda+i:], lda)
// Apply I - V * T^T * V^T to this column (call it b)
// from the left, using the last column of T as
// workspace.
// Let V = [ V1 ] and b = [ b1 ] (first i rows)
// [ V2 ] [ b2 ]
// where V1 is unit lower triangular.
//
// w := V1^T * b1.
bi.Dcopy(i, a[k*lda+i:], lda, t[nb-1:], ldt)
bi.Dtrmv(blas.Lower, blas.Trans, blas.Unit, i,
a[k*lda:], lda, t[nb-1:], ldt)
// w := w + V2^T * b2.
bi.Dgemv(blas.Trans, n-k-i, i,
1, a[(k+i)*lda:], lda,
a[(k+i)*lda+i:], lda,
1, t[nb-1:], ldt)
// w := T^T * w.
bi.Dtrmv(blas.Upper, blas.Trans, blas.NonUnit, i,
t, ldt, t[nb-1:], ldt)
// b2 := b2 - V2*w.
bi.Dgemv(blas.NoTrans, n-k-i, i,
-1, a[(k+i)*lda:], lda,
t[nb-1:], ldt,
1, a[(k+i)*lda+i:], lda)
// b1 := b1 - V1*w.
bi.Dtrmv(blas.Lower, blas.NoTrans, blas.Unit, i,
a[k*lda:], lda, t[nb-1:], ldt)
bi.Daxpy(i, -1, t[nb-1:], ldt, a[k*lda+i:], lda)
a[(k+i-1)*lda+i-1] = ei
}
// Generate the elementary reflector H_i to annihilate
// A[k+i+1:n,i].
ei, tau[i] = impl.Dlarfg(n-k-i, a[(k+i)*lda+i], a[min(k+i+1, n-1)*lda+i:], lda)
a[(k+i)*lda+i] = 1
// Compute Y[k:n,i].
bi.Dgemv(blas.NoTrans, n-k, n-k-i,
1, a[k*lda+i+1:], lda,
a[(k+i)*lda+i:], lda,
0, y[k*ldy+i:], ldy)
bi.Dgemv(blas.Trans, n-k-i, i,
1, a[(k+i)*lda:], lda,
a[(k+i)*lda+i:], lda,
0, t[i:], ldt)
bi.Dgemv(blas.NoTrans, n-k, i,
-1, y[k*ldy:], ldy,
t[i:], ldt,
1, y[k*ldy+i:], ldy)
bi.Dscal(n-k, tau[i], y[k*ldy+i:], ldy)
// Compute T[0:i,i].
bi.Dscal(i, -tau[i], t[i:], ldt)
bi.Dtrmv(blas.Upper, blas.NoTrans, blas.NonUnit, i,
t, ldt, t[i:], ldt)
t[i*ldt+i] = tau[i]
}
a[(k+nb-1)*lda+nb-1] = ei
// Compute Y[0:k,0:nb].
impl.Dlacpy(blas.All, k, nb, a[1:], lda, y, ldy)
bi.Dtrmm(blas.Right, blas.Lower, blas.NoTrans, blas.Unit, k, nb,
1, a[k*lda:], lda, y, ldy)
if n > k+nb {
bi.Dgemm(blas.NoTrans, blas.NoTrans, k, nb, n-k-nb,
1, a[1+nb:], lda,
a[(k+nb)*lda:], lda,
1, y, ldy)
}
bi.Dtrmm(blas.Right, blas.Upper, blas.NoTrans, blas.NonUnit, k, nb,
1, t, ldt, y, ldy)
}