Files
gonum/lapack/native/dggsvp3.go
2017-05-23 00:03:03 -06:00

274 lines
7.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2017 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dggsvp3 computes orthogonal matrices U, V and Q such that
//
// n-k-l k l
// U^T*A*Q = k [ 0 A12 A13 ] if m-k-l >= 0;
// l [ 0 0 A23 ]
// m-k-l [ 0 0 0 ]
//
// n-k-l k l
// U^T*A*Q = k [ 0 A12 A13 ] if m-k-l < 0;
// m-k [ 0 0 A23 ]
//
// n-k-l k l
// V^T*B*Q = l [ 0 0 B13 ]
// p-l [ 0 0 0 ]
//
// where the k×k matrix A12 and l×l matrix B13 are non-singular
// upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
// otherwise A23 is (m-k)×l upper trapezoidal.
//
// Dggsvp3 returns k and l, the dimensions of the sub-blocks. k+l
// is the effective numerical rank of the (m+p)×n matrix [ A^T B^T ]^T.
//
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
// is as follows
// jobU == lapack.GSVDU Compute orthogonal matrix U
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
// The behavior is the same for jobV and jobQ with the exception that instead of
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
// relevant job parameter is lapack.GSVDNone.
//
// tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
// iteration procedure. Generally, they are the same as used in the preprocessing
// step, for example,
// tola = max(m, n)*norm(A)*eps,
// tolb = max(p, n)*norm(B)*eps.
// Where eps is the machine epsilon.
//
// iwork must have length n, work must have length at least max(1, lwork), and
// lwork must be -1 or greater than zero, otherwise Dggsvp3 will panic.
//
// Dggsvp3 is an internal routine. It is exported for testing purposes.
func (impl Implementation) Dggsvp3(jobU, jobV, jobQ lapack.GSVDJob, m, p, n int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, iwork []int, tau, work []float64, lwork int) (k, l int) {
const forward = true
checkMatrix(m, n, a, lda)
checkMatrix(p, n, b, ldb)
wantu := jobU == lapack.GSVDU
if !wantu && jobU != lapack.GSVDNone {
panic(badGSVDJob + "U")
}
if jobU != lapack.GSVDNone {
checkMatrix(m, m, u, ldu)
}
wantv := jobV == lapack.GSVDV
if !wantv && jobV != lapack.GSVDNone {
panic(badGSVDJob + "V")
}
if jobV != lapack.GSVDNone {
checkMatrix(p, p, v, ldv)
}
wantq := jobQ == lapack.GSVDQ
if !wantq && jobQ != lapack.GSVDNone {
panic(badGSVDJob + "Q")
}
if jobQ != lapack.GSVDNone {
checkMatrix(n, n, q, ldq)
}
if len(iwork) != n {
panic(badWork)
}
if lwork != -1 && lwork < 1 {
panic(badWork)
}
if len(work) < max(1, lwork) {
panic(badWork)
}
var lwkopt int
impl.Dgeqp3(p, n, b, ldb, iwork, tau, work, -1)
lwkopt = int(work[0])
if wantv {
lwkopt = max(lwkopt, p)
}
lwkopt = max(lwkopt, min(n, p))
lwkopt = max(lwkopt, m)
if wantq {
lwkopt = max(lwkopt, n)
}
impl.Dgeqp3(m, n, a, lda, iwork, tau, work, -1)
lwkopt = max(lwkopt, int(work[0]))
lwkopt = max(1, lwkopt)
if lwork == -1 {
work[0] = float64(lwkopt)
return 0, 0
}
// tau check must come after lwkopt query since
// the Dggsvd3 call for lwkopt query may have
// lwork == -1, and tau is provided by work.
if len(tau) < n {
panic(badTau)
}
// QR with column pivoting of B: B*P = V*[ S11 S12 ].
// [ 0 0 ]
for i := range iwork[:n] {
iwork[i] = 0
}
impl.Dgeqp3(p, n, b, ldb, iwork, tau, work, lwork)
// Update A := A*P.
impl.Dlapmt(forward, m, n, a, lda, iwork)
// Determine the effective rank of matrix B.
for i := 0; i < min(p, n); i++ {
if math.Abs(b[i*ldb+i]) > tolb {
l++
}
}
if wantv {
// Copy the details of V, and form V.
impl.Dlaset(blas.All, p, p, 0, 0, v, ldv)
if p > 1 {
impl.Dlacpy(blas.Lower, p-1, min(p, n), b[ldb:], ldb, v[ldv:], ldv)
}
impl.Dorg2r(p, p, min(p, n), v, ldv, tau, work)
}
// Clean up B.
for i := 1; i < l; i++ {
r := b[i*ldb : i*ldb+i]
for j := range r {
r[j] = 0
}
}
if p > l {
impl.Dlaset(blas.All, p-l, n, 0, 0, b[l*ldb:], ldb)
}
if wantq {
// Set Q = I and update Q := Q*P.
impl.Dlaset(blas.All, n, n, 0, 1, q, ldq)
impl.Dlapmt(forward, n, n, q, ldq, iwork)
}
if p >= l && n != l {
// RQ factorization of [ S11 S12 ]: [ S11 S12 ] = [ 0 S12 ]*Z.
impl.Dgerq2(l, n, b, ldb, tau, work)
// Update A := A*Z^T.
impl.Dormr2(blas.Right, blas.Trans, m, n, l, b, ldb, tau, a, lda, work)
if wantq {
// Update Q := Q*Z^T.
impl.Dormr2(blas.Right, blas.Trans, n, n, l, b, ldb, tau, q, ldq, work)
}
// Clean up B.
impl.Dlaset(blas.All, l, n-l, 0, 0, b, ldb)
for i := 1; i < l; i++ {
r := b[i*ldb+n-l : i*ldb+i+n-l]
for j := range r {
r[j] = 0
}
}
}
// Let N-L L
// A = [ A11 A12 ] M,
//
// then the following does the complete QR decomposition of A11:
//
// A11 = U*[ 0 T12 ]*P1^T.
// [ 0 0 ]
for i := range iwork[:n-l] {
iwork[i] = 0
}
impl.Dgeqp3(m, n-l, a, lda, iwork[:n-l], tau, work, lwork)
// Determine the effective rank of A11.
for i := 0; i < min(m, n-l); i++ {
if math.Abs(a[i*lda+i]) > tola {
k++
}
}
// Update A12 := U^T*A12, where A12 = A[0:m, n-l:n].
impl.Dorm2r(blas.Left, blas.Trans, m, l, min(m, n-l), a, lda, tau, a[n-l:], lda, work)
if wantu {
// Copy the details of U, and form U.
impl.Dlaset(blas.All, m, m, 0, 0, u, ldu)
if m > 1 {
impl.Dlacpy(blas.Lower, m-1, min(m, n-l), a[lda:], lda, u[ldu:], ldu)
}
impl.Dorg2r(m, m, min(m, n-l), u, ldu, tau, work)
}
if wantq {
// Update Q[0:n, 0:n-l] := Q[0:n, 0:n-l]*P1.
impl.Dlapmt(forward, n, n-l, q, ldq, iwork[:n-l])
}
// Clean up A: set the strictly lower triangular part of
// A[0:k, 0:k] = 0, and A[k:m, 0:n-l] = 0.
for i := 1; i < k; i++ {
r := a[i*lda : i*lda+i]
for j := range r {
r[j] = 0
}
}
if m > k {
impl.Dlaset(blas.All, m-k, n-l, 0, 0, a[k*lda:], lda)
}
if n-l > k {
// RQ factorization of [ T11 T12 ] = [ 0 T12 ]*Z1.
impl.Dgerq2(k, n-l, a, lda, tau, work)
if wantq {
// Update Q[0:n, 0:n-l] := Q[0:n, 0:n-l]*Z1^T.
impl.Dorm2r(blas.Right, blas.Trans, n, n-l, k, a, lda, tau, q, ldq, work)
}
// Clean up A.
impl.Dlaset(blas.All, k, n-l-k, 0, 0, a, lda)
for i := 1; i < k; i++ {
r := a[i*lda+n-k-l : i*lda+i+n-k-l]
for j := range r {
a[j] = 0
}
}
}
if m > k {
// QR factorization of A[k:m, n-l:n].
impl.Dgeqr2(m-k, l, a[k*lda+n-l:], lda, tau, work)
if wantu {
// Update U[:, k:m) := U[:, k:m]*U1.
impl.Dorm2r(blas.Right, blas.NoTrans, m, m-k, min(m-k, l), a[k*lda+n-l:], lda, tau, u[k:], ldu, work)
}
// Clean up A.
for i := k + 1; i < m; i++ {
r := a[i*lda+n-l : i*lda+min(n-l+i-k, n)]
for j := range r {
r[j] = 0
}
}
}
work[0] = float64(lwkopt)
return k, l
}