mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
274 lines
7.0 KiB
Go
274 lines
7.0 KiB
Go
// Copyright ©2017 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/lapack"
|
||
)
|
||
|
||
// Dggsvp3 computes orthogonal matrices U, V and Q such that
|
||
//
|
||
// n-k-l k l
|
||
// U^T*A*Q = k [ 0 A12 A13 ] if m-k-l >= 0;
|
||
// l [ 0 0 A23 ]
|
||
// m-k-l [ 0 0 0 ]
|
||
//
|
||
// n-k-l k l
|
||
// U^T*A*Q = k [ 0 A12 A13 ] if m-k-l < 0;
|
||
// m-k [ 0 0 A23 ]
|
||
//
|
||
// n-k-l k l
|
||
// V^T*B*Q = l [ 0 0 B13 ]
|
||
// p-l [ 0 0 0 ]
|
||
//
|
||
// where the k×k matrix A12 and l×l matrix B13 are non-singular
|
||
// upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
|
||
// otherwise A23 is (m-k)×l upper trapezoidal.
|
||
//
|
||
// Dggsvp3 returns k and l, the dimensions of the sub-blocks. k+l
|
||
// is the effective numerical rank of the (m+p)×n matrix [ A^T B^T ]^T.
|
||
//
|
||
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
|
||
// is as follows
|
||
// jobU == lapack.GSVDU Compute orthogonal matrix U
|
||
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
|
||
// The behavior is the same for jobV and jobQ with the exception that instead of
|
||
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
|
||
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
|
||
// relevant job parameter is lapack.GSVDNone.
|
||
//
|
||
// tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
|
||
// iteration procedure. Generally, they are the same as used in the preprocessing
|
||
// step, for example,
|
||
// tola = max(m, n)*norm(A)*eps,
|
||
// tolb = max(p, n)*norm(B)*eps.
|
||
// Where eps is the machine epsilon.
|
||
//
|
||
// iwork must have length n, work must have length at least max(1, lwork), and
|
||
// lwork must be -1 or greater than zero, otherwise Dggsvp3 will panic.
|
||
//
|
||
// Dggsvp3 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dggsvp3(jobU, jobV, jobQ lapack.GSVDJob, m, p, n int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, iwork []int, tau, work []float64, lwork int) (k, l int) {
|
||
const forward = true
|
||
|
||
checkMatrix(m, n, a, lda)
|
||
checkMatrix(p, n, b, ldb)
|
||
|
||
wantu := jobU == lapack.GSVDU
|
||
if !wantu && jobU != lapack.GSVDNone {
|
||
panic(badGSVDJob + "U")
|
||
}
|
||
if jobU != lapack.GSVDNone {
|
||
checkMatrix(m, m, u, ldu)
|
||
}
|
||
|
||
wantv := jobV == lapack.GSVDV
|
||
if !wantv && jobV != lapack.GSVDNone {
|
||
panic(badGSVDJob + "V")
|
||
}
|
||
if jobV != lapack.GSVDNone {
|
||
checkMatrix(p, p, v, ldv)
|
||
}
|
||
|
||
wantq := jobQ == lapack.GSVDQ
|
||
if !wantq && jobQ != lapack.GSVDNone {
|
||
panic(badGSVDJob + "Q")
|
||
}
|
||
if jobQ != lapack.GSVDNone {
|
||
checkMatrix(n, n, q, ldq)
|
||
}
|
||
|
||
if len(iwork) != n {
|
||
panic(badWork)
|
||
}
|
||
if lwork != -1 && lwork < 1 {
|
||
panic(badWork)
|
||
}
|
||
if len(work) < max(1, lwork) {
|
||
panic(badWork)
|
||
}
|
||
|
||
var lwkopt int
|
||
impl.Dgeqp3(p, n, b, ldb, iwork, tau, work, -1)
|
||
lwkopt = int(work[0])
|
||
if wantv {
|
||
lwkopt = max(lwkopt, p)
|
||
}
|
||
lwkopt = max(lwkopt, min(n, p))
|
||
lwkopt = max(lwkopt, m)
|
||
if wantq {
|
||
lwkopt = max(lwkopt, n)
|
||
}
|
||
impl.Dgeqp3(m, n, a, lda, iwork, tau, work, -1)
|
||
lwkopt = max(lwkopt, int(work[0]))
|
||
lwkopt = max(1, lwkopt)
|
||
if lwork == -1 {
|
||
work[0] = float64(lwkopt)
|
||
return 0, 0
|
||
}
|
||
|
||
// tau check must come after lwkopt query since
|
||
// the Dggsvd3 call for lwkopt query may have
|
||
// lwork == -1, and tau is provided by work.
|
||
if len(tau) < n {
|
||
panic(badTau)
|
||
}
|
||
|
||
// QR with column pivoting of B: B*P = V*[ S11 S12 ].
|
||
// [ 0 0 ]
|
||
for i := range iwork[:n] {
|
||
iwork[i] = 0
|
||
}
|
||
impl.Dgeqp3(p, n, b, ldb, iwork, tau, work, lwork)
|
||
|
||
// Update A := A*P.
|
||
impl.Dlapmt(forward, m, n, a, lda, iwork)
|
||
|
||
// Determine the effective rank of matrix B.
|
||
for i := 0; i < min(p, n); i++ {
|
||
if math.Abs(b[i*ldb+i]) > tolb {
|
||
l++
|
||
}
|
||
}
|
||
|
||
if wantv {
|
||
// Copy the details of V, and form V.
|
||
impl.Dlaset(blas.All, p, p, 0, 0, v, ldv)
|
||
if p > 1 {
|
||
impl.Dlacpy(blas.Lower, p-1, min(p, n), b[ldb:], ldb, v[ldv:], ldv)
|
||
}
|
||
impl.Dorg2r(p, p, min(p, n), v, ldv, tau, work)
|
||
}
|
||
|
||
// Clean up B.
|
||
for i := 1; i < l; i++ {
|
||
r := b[i*ldb : i*ldb+i]
|
||
for j := range r {
|
||
r[j] = 0
|
||
}
|
||
}
|
||
if p > l {
|
||
impl.Dlaset(blas.All, p-l, n, 0, 0, b[l*ldb:], ldb)
|
||
}
|
||
|
||
if wantq {
|
||
// Set Q = I and update Q := Q*P.
|
||
impl.Dlaset(blas.All, n, n, 0, 1, q, ldq)
|
||
impl.Dlapmt(forward, n, n, q, ldq, iwork)
|
||
}
|
||
|
||
if p >= l && n != l {
|
||
// RQ factorization of [ S11 S12 ]: [ S11 S12 ] = [ 0 S12 ]*Z.
|
||
impl.Dgerq2(l, n, b, ldb, tau, work)
|
||
|
||
// Update A := A*Z^T.
|
||
impl.Dormr2(blas.Right, blas.Trans, m, n, l, b, ldb, tau, a, lda, work)
|
||
|
||
if wantq {
|
||
// Update Q := Q*Z^T.
|
||
impl.Dormr2(blas.Right, blas.Trans, n, n, l, b, ldb, tau, q, ldq, work)
|
||
}
|
||
|
||
// Clean up B.
|
||
impl.Dlaset(blas.All, l, n-l, 0, 0, b, ldb)
|
||
for i := 1; i < l; i++ {
|
||
r := b[i*ldb+n-l : i*ldb+i+n-l]
|
||
for j := range r {
|
||
r[j] = 0
|
||
}
|
||
}
|
||
}
|
||
|
||
// Let N-L L
|
||
// A = [ A11 A12 ] M,
|
||
//
|
||
// then the following does the complete QR decomposition of A11:
|
||
//
|
||
// A11 = U*[ 0 T12 ]*P1^T.
|
||
// [ 0 0 ]
|
||
for i := range iwork[:n-l] {
|
||
iwork[i] = 0
|
||
}
|
||
impl.Dgeqp3(m, n-l, a, lda, iwork[:n-l], tau, work, lwork)
|
||
|
||
// Determine the effective rank of A11.
|
||
for i := 0; i < min(m, n-l); i++ {
|
||
if math.Abs(a[i*lda+i]) > tola {
|
||
k++
|
||
}
|
||
}
|
||
|
||
// Update A12 := U^T*A12, where A12 = A[0:m, n-l:n].
|
||
impl.Dorm2r(blas.Left, blas.Trans, m, l, min(m, n-l), a, lda, tau, a[n-l:], lda, work)
|
||
|
||
if wantu {
|
||
// Copy the details of U, and form U.
|
||
impl.Dlaset(blas.All, m, m, 0, 0, u, ldu)
|
||
if m > 1 {
|
||
impl.Dlacpy(blas.Lower, m-1, min(m, n-l), a[lda:], lda, u[ldu:], ldu)
|
||
}
|
||
impl.Dorg2r(m, m, min(m, n-l), u, ldu, tau, work)
|
||
}
|
||
|
||
if wantq {
|
||
// Update Q[0:n, 0:n-l] := Q[0:n, 0:n-l]*P1.
|
||
impl.Dlapmt(forward, n, n-l, q, ldq, iwork[:n-l])
|
||
}
|
||
|
||
// Clean up A: set the strictly lower triangular part of
|
||
// A[0:k, 0:k] = 0, and A[k:m, 0:n-l] = 0.
|
||
for i := 1; i < k; i++ {
|
||
r := a[i*lda : i*lda+i]
|
||
for j := range r {
|
||
r[j] = 0
|
||
}
|
||
}
|
||
if m > k {
|
||
impl.Dlaset(blas.All, m-k, n-l, 0, 0, a[k*lda:], lda)
|
||
}
|
||
|
||
if n-l > k {
|
||
// RQ factorization of [ T11 T12 ] = [ 0 T12 ]*Z1.
|
||
impl.Dgerq2(k, n-l, a, lda, tau, work)
|
||
|
||
if wantq {
|
||
// Update Q[0:n, 0:n-l] := Q[0:n, 0:n-l]*Z1^T.
|
||
impl.Dorm2r(blas.Right, blas.Trans, n, n-l, k, a, lda, tau, q, ldq, work)
|
||
}
|
||
|
||
// Clean up A.
|
||
impl.Dlaset(blas.All, k, n-l-k, 0, 0, a, lda)
|
||
for i := 1; i < k; i++ {
|
||
r := a[i*lda+n-k-l : i*lda+i+n-k-l]
|
||
for j := range r {
|
||
a[j] = 0
|
||
}
|
||
}
|
||
}
|
||
|
||
if m > k {
|
||
// QR factorization of A[k:m, n-l:n].
|
||
impl.Dgeqr2(m-k, l, a[k*lda+n-l:], lda, tau, work)
|
||
if wantu {
|
||
// Update U[:, k:m) := U[:, k:m]*U1.
|
||
impl.Dorm2r(blas.Right, blas.NoTrans, m, m-k, min(m-k, l), a[k*lda+n-l:], lda, tau, u[k:], ldu, work)
|
||
}
|
||
|
||
// Clean up A.
|
||
for i := k + 1; i < m; i++ {
|
||
r := a[i*lda+n-l : i*lda+min(n-l+i-k, n)]
|
||
for j := range r {
|
||
r[j] = 0
|
||
}
|
||
}
|
||
}
|
||
|
||
work[0] = float64(lwkopt)
|
||
return k, l
|
||
}
|