mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
71 lines
2.1 KiB
Go
71 lines
2.1 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import (
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
// Dgetrf computes the LU decomposition of the m×n matrix A.
|
||
// The LU decomposition is a factorization of A into
|
||
// A = P * L * U
|
||
// where P is a permutation matrix, L is a unit lower triangular matrix, and
|
||
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored
|
||
// in place into a.
|
||
//
|
||
// ipiv is a permutation vector. It indicates that row i of the matrix was
|
||
// changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic
|
||
// otherwise. ipiv is zero-indexed.
|
||
//
|
||
// Dgetrf is the blocked version of the algorithm.
|
||
//
|
||
// Dgetrf returns whether the matrix A is singular. The LU decomposition will
|
||
// be computed regardless of the singularity of A, but division by zero
|
||
// will occur if the false is returned and the result is used to solve a
|
||
// system of equations.
|
||
func (impl Implementation) Dgetrf(m, n int, a []float64, lda int, ipiv []int) (ok bool) {
|
||
mn := min(m, n)
|
||
checkMatrix(m, n, a, lda)
|
||
if len(ipiv) < mn {
|
||
panic(badIpiv)
|
||
}
|
||
if m == 0 || n == 0 {
|
||
return false
|
||
}
|
||
bi := blas64.Implementation()
|
||
nb := impl.Ilaenv(1, "DGETRF", " ", m, n, -1, -1)
|
||
if nb <= 1 || nb >= min(m, n) {
|
||
// Use the unblocked algorithm.
|
||
return impl.Dgetf2(m, n, a, lda, ipiv)
|
||
}
|
||
ok = true
|
||
for j := 0; j < mn; j += nb {
|
||
jb := min(mn-j, nb)
|
||
blockOk := impl.Dgetf2(m-j, jb, a[j*lda+j:], lda, ipiv[j:])
|
||
if !blockOk {
|
||
ok = false
|
||
}
|
||
for i := j; i <= min(m-1, j+jb-1); i++ {
|
||
ipiv[i] = j + ipiv[i]
|
||
}
|
||
impl.Dlaswp(j, a, lda, j, j+jb-1, ipiv[:j+jb], 1)
|
||
if j+jb < n {
|
||
impl.Dlaswp(n-j-jb, a[j+jb:], lda, j, j+jb-1, ipiv[:j+jb], 1)
|
||
bi.Dtrsm(blas.Left, blas.Lower, blas.NoTrans, blas.Unit,
|
||
jb, n-j-jb, 1,
|
||
a[j*lda+j:], lda,
|
||
a[j*lda+j+jb:], lda)
|
||
if j+jb < m {
|
||
bi.Dgemm(blas.NoTrans, blas.NoTrans, m-j-jb, n-j-jb, jb, -1,
|
||
a[(j+jb)*lda+j:], lda,
|
||
a[j*lda+j+jb:], lda,
|
||
1, a[(j+jb)*lda+j+jb:], lda)
|
||
}
|
||
}
|
||
}
|
||
return ok
|
||
}
|