mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 07:06:54 +08:00
70 lines
1.9 KiB
Go
70 lines
1.9 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
// Dgetf2 computes the LU decomposition of the m×n matrix A.
|
||
// The LU decomposition is a factorization of a into
|
||
// A = P * L * U
|
||
// where P is a permutation matrix, L is a unit lower triangular matrix, and
|
||
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored
|
||
// in place into a.
|
||
//
|
||
// ipiv is a permutation vector. It indicates that row i of the matrix was
|
||
// changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic
|
||
// otherwise. ipiv is zero-indexed.
|
||
//
|
||
// Dgetf2 returns whether the matrix A is singular. The LU decomposition will
|
||
// be computed regardless of the singularity of A, but division by zero
|
||
// will occur if the false is returned and the result is used to solve a
|
||
// system of equations.
|
||
//
|
||
// Dgetf2 is an internal routine. It is exported for testing purposes.
|
||
func (Implementation) Dgetf2(m, n int, a []float64, lda int, ipiv []int) (ok bool) {
|
||
mn := min(m, n)
|
||
checkMatrix(m, n, a, lda)
|
||
if len(ipiv) < mn {
|
||
panic(badIpiv)
|
||
}
|
||
if m == 0 || n == 0 {
|
||
return true
|
||
}
|
||
bi := blas64.Implementation()
|
||
sfmin := dlamchS
|
||
ok = true
|
||
for j := 0; j < mn; j++ {
|
||
// Find a pivot and test for singularity.
|
||
jp := j + bi.Idamax(m-j, a[j*lda+j:], lda)
|
||
ipiv[j] = jp
|
||
if a[jp*lda+j] == 0 {
|
||
ok = false
|
||
} else {
|
||
// Swap the rows if necessary.
|
||
if jp != j {
|
||
bi.Dswap(n, a[j*lda:], 1, a[jp*lda:], 1)
|
||
}
|
||
if j < m-1 {
|
||
aj := a[j*lda+j]
|
||
if math.Abs(aj) >= sfmin {
|
||
bi.Dscal(m-j-1, 1/aj, a[(j+1)*lda+j:], lda)
|
||
} else {
|
||
for i := 0; i < m-j-1; i++ {
|
||
a[(j+1)*lda+j] = a[(j+1)*lda+j] / a[lda*j+j]
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if j < mn-1 {
|
||
bi.Dger(m-j-1, n-j-1, -1, a[(j+1)*lda+j:], lda, a[j*lda+j+1:], 1, a[(j+1)*lda+j+1:], lda)
|
||
}
|
||
}
|
||
return ok
|
||
}
|