Files
gonum/lapack/native/dgeqrf.go
2017-05-23 00:03:03 -06:00

100 lines
3.0 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/lapack"
)
// Dgeqrf computes the QR factorization of the m×n matrix A using a blocked
// algorithm. See the documentation for Dgeqr2 for a description of the
// parameters at entry and exit.
//
// work is temporary storage, and lwork specifies the usable memory length.
// The length of work must be at least max(1, lwork) and lwork must be -1
// or at least n, otherwise this function will panic.
// Dgeqrf is a blocked QR factorization, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Dgeqrf,
// the optimal work length will be stored into work[0].
//
// tau must have length at least min(m,n), and this function will panic otherwise.
func (impl Implementation) Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
if len(work) < max(1, lwork) {
panic(shortWork)
}
// nb is the optimal blocksize, i.e. the number of columns transformed at a time.
nb := impl.Ilaenv(1, "DGEQRF", " ", m, n, -1, -1)
lworkopt := n * max(nb, 1)
lworkopt = max(n, lworkopt)
if lwork == -1 {
work[0] = float64(lworkopt)
return
}
checkMatrix(m, n, a, lda)
if lwork < n {
panic(badWork)
}
k := min(m, n)
if len(tau) < k {
panic(badTau)
}
if k == 0 {
work[0] = float64(lworkopt)
return
}
nbmin := 2 // Minimal block size.
var nx int // Use unblocked (unless changed in the next for loop)
iws := n
ldwork := nb
// Only consider blocked if the suggested block size is > 1 and the
// number of rows or columns is sufficiently large.
if 1 < nb && nb < k {
// nx is the block size at which the code switches from blocked
// to unblocked.
nx = max(0, impl.Ilaenv(3, "DGEQRF", " ", m, n, -1, -1))
if k > nx {
iws = ldwork * n
if lwork < iws {
// Not enough workspace to use the optimal block
// size. Get the minimum block size instead.
nb = lwork / n
nbmin = max(2, impl.Ilaenv(2, "DGEQRF", " ", m, n, -1, -1))
}
}
}
for i := range work {
work[i] = 0
}
// Compute QR using a blocked algorithm.
var i int
if nbmin <= nb && nb < k && nx < k {
for i = 0; i < k-nx; i += nb {
ib := min(k-i, nb)
// Compute the QR factorization of the current block.
impl.Dgeqr2(m-i, ib, a[i*lda+i:], lda, tau[i:], work)
if i+ib < n {
// Form the triangular factor of the block reflector and apply H^T
// In Dlarft, work becomes the T matrix.
impl.Dlarft(lapack.Forward, lapack.ColumnWise, m-i, ib,
a[i*lda+i:], lda,
tau[i:],
work, ldwork)
impl.Dlarfb(blas.Left, blas.Trans, lapack.Forward, lapack.ColumnWise,
m-i, n-i-ib, ib,
a[i*lda+i:], lda,
work, ldwork,
a[i*lda+i+ib:], lda,
work[ib*ldwork:], ldwork)
}
}
}
// Call unblocked code on the remaining columns.
if i < k {
impl.Dgeqr2(m-i, n-i, a[i*lda+i:], lda, tau[i:], work)
}
work[0] = float64(lworkopt)
}