mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
60 lines
1.9 KiB
Go
60 lines
1.9 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import "gonum.org/v1/gonum/blas"
|
||
|
||
// Dgeqr2 computes a QR factorization of the m×n matrix A.
|
||
//
|
||
// In a QR factorization, Q is an m×m orthonormal matrix, and R is an
|
||
// upper triangular m×n matrix.
|
||
//
|
||
// A is modified to contain the information to construct Q and R.
|
||
// The upper triangle of a contains the matrix R. The lower triangular elements
|
||
// (not including the diagonal) contain the elementary reflectors. tau is modified
|
||
// to contain the reflector scales. tau must have length at least min(m,n), and
|
||
// this function will panic otherwise.
|
||
//
|
||
// The ith elementary reflector can be explicitly constructed by first extracting
|
||
// the
|
||
// v[j] = 0 j < i
|
||
// v[j] = 1 j == i
|
||
// v[j] = a[j*lda+i] j > i
|
||
// and computing H_i = I - tau[i] * v * v^T.
|
||
//
|
||
// The orthonormal matrix Q can be constructed from a product of these elementary
|
||
// reflectors, Q = H_0 * H_1 * ... * H_{k-1}, where k = min(m,n).
|
||
//
|
||
// work is temporary storage of length at least n and this function will panic otherwise.
|
||
//
|
||
// Dgeqr2 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgeqr2(m, n int, a []float64, lda int, tau, work []float64) {
|
||
// TODO(btracey): This is oriented such that columns of a are eliminated.
|
||
// This likely could be re-arranged to take better advantage of row-major
|
||
// storage.
|
||
checkMatrix(m, n, a, lda)
|
||
if len(work) < n {
|
||
panic(badWork)
|
||
}
|
||
k := min(m, n)
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
for i := 0; i < k; i++ {
|
||
// Generate elementary reflector H_i.
|
||
a[i*lda+i], tau[i] = impl.Dlarfg(m-i, a[i*lda+i], a[min((i+1), m-1)*lda+i:], lda)
|
||
if i < n-1 {
|
||
aii := a[i*lda+i]
|
||
a[i*lda+i] = 1
|
||
impl.Dlarf(blas.Left, m-i, n-i-1,
|
||
a[i*lda+i:], lda,
|
||
tau[i],
|
||
a[i*lda+i+1:], lda,
|
||
work)
|
||
a[i*lda+i] = aii
|
||
}
|
||
}
|
||
}
|