mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
175 lines
4.5 KiB
Go
175 lines
4.5 KiB
Go
// Copyright ©2017 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import (
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
)
|
||
|
||
// Dgeqp3 computes a QR factorization with column pivoting of the
|
||
// m×n matrix A: A*P = Q*R using Level 3 BLAS.
|
||
//
|
||
// The matrix Q is represented as a product of elementary reflectors
|
||
// Q = H_0 H_1 . . . H_{k-1}, where k = min(m,n).
|
||
// Each H_i has the form
|
||
// H_i = I - tau * v * v^T
|
||
// where tau and v are real vectors with v[0:i-1] = 0 and v[i] = 1;
|
||
// v[i:m] is stored on exit in A[i:m, i], and tau in tau[i].
|
||
//
|
||
// jpvt specifies a column pivot to be applied to A. If
|
||
// jpvt[j] is at least zero, the jth column of A is permuted
|
||
// to the front of A*P (a leading column), if jpvt[j] is -1
|
||
// the jth column of A is a free column. If jpvt[j] < -1, Dgeqp3
|
||
// will panic. On return, jpvt holds the permutation that was
|
||
// applied; the jth column of A*P was the jpvt[j] column of A.
|
||
// jpvt must have length n or Dgeqp3 will panic.
|
||
//
|
||
// tau holds the scalar factors of the elementary reflectors.
|
||
// It must have length min(m, n), otherwise Dgeqp3 will panic.
|
||
//
|
||
// work must have length at least max(1,lwork), and lwork must be at least
|
||
// 3*n+1, otherwise Dgeqp3 will panic. For optimal performance lwork must
|
||
// be at least 2*n+(n+1)*nb, where nb is the optimal blocksize. On return,
|
||
// work[0] will contain the optimal value of lwork.
|
||
//
|
||
// If lwork == -1, instead of performing Dgeqp3, only the optimal value of lwork
|
||
// will be stored in work[0].
|
||
//
|
||
// Dgeqp3 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int) {
|
||
const (
|
||
inb = 1
|
||
inbmin = 2
|
||
ixover = 3
|
||
)
|
||
checkMatrix(m, n, a, lda)
|
||
|
||
if len(jpvt) != n {
|
||
panic(badIpiv)
|
||
}
|
||
for _, v := range jpvt {
|
||
if v < -1 || n <= v {
|
||
panic("lapack: jpvt element out of range")
|
||
}
|
||
}
|
||
minmn := min(m, n)
|
||
if len(work) < max(1, lwork) {
|
||
panic(badWork)
|
||
}
|
||
|
||
var iws, lwkopt, nb int
|
||
if minmn == 0 {
|
||
iws = 1
|
||
lwkopt = 1
|
||
} else {
|
||
iws = 3*n + 1
|
||
nb = impl.Ilaenv(inb, "DGEQRF", " ", m, n, -1, -1)
|
||
lwkopt = 2*n + (n+1)*nb
|
||
}
|
||
work[0] = float64(lwkopt)
|
||
|
||
if lwork == -1 {
|
||
return
|
||
}
|
||
|
||
if len(tau) < minmn {
|
||
panic(badTau)
|
||
}
|
||
|
||
bi := blas64.Implementation()
|
||
|
||
// Move initial columns up front.
|
||
var nfxd int
|
||
for j := 0; j < n; j++ {
|
||
if jpvt[j] == -1 {
|
||
jpvt[j] = j
|
||
continue
|
||
}
|
||
if j != nfxd {
|
||
bi.Dswap(m, a[j:], lda, a[nfxd:], lda)
|
||
jpvt[j], jpvt[nfxd] = jpvt[nfxd], j
|
||
} else {
|
||
jpvt[j] = j
|
||
}
|
||
nfxd++
|
||
}
|
||
|
||
// Factorize nfxd columns.
|
||
//
|
||
// Compute the QR factorization of nfxd columns and update remaining columns.
|
||
if nfxd > 0 {
|
||
na := min(m, nfxd)
|
||
impl.Dgeqrf(m, na, a, lda, tau, work, lwork)
|
||
iws = max(iws, int(work[0]))
|
||
if na < n {
|
||
impl.Dormqr(blas.Left, blas.Trans, m, n-na, na, a, lda, tau[:na], a[na:], lda,
|
||
work, lwork)
|
||
iws = max(iws, int(work[0]))
|
||
}
|
||
}
|
||
|
||
if nfxd >= minmn {
|
||
work[0] = float64(iws)
|
||
return
|
||
}
|
||
|
||
// Factorize free columns.
|
||
sm := m - nfxd
|
||
sn := n - nfxd
|
||
sminmn := minmn - nfxd
|
||
|
||
// Determine the block size.
|
||
nb = impl.Ilaenv(inb, "DGEQRF", " ", sm, sn, -1, -1)
|
||
nbmin := 2
|
||
nx := 0
|
||
|
||
if 1 < nb && nb < sminmn {
|
||
// Determine when to cross over from blocked to unblocked code.
|
||
nx = max(0, impl.Ilaenv(ixover, "DGEQRF", " ", sm, sn, -1, -1))
|
||
|
||
if nx < sminmn {
|
||
// Determine if workspace is large enough for blocked code.
|
||
minws := 2*sn + (sn+1)*nb
|
||
iws = max(iws, minws)
|
||
if lwork < minws {
|
||
// Not enough workspace to use optimal nb. Reduce
|
||
// nb and determine the minimum value of nb.
|
||
nb = (lwork - 2*sn) / (sn + 1)
|
||
nbmin = max(2, impl.Ilaenv(inbmin, "DGEQRF", " ", sm, sn, -1, -1))
|
||
}
|
||
}
|
||
}
|
||
|
||
// Initialize partial column norms.
|
||
// The first n elements of work store the exact column norms.
|
||
for j := nfxd; j < n; j++ {
|
||
work[j] = bi.Dnrm2(sm, a[nfxd*lda+j:], lda)
|
||
work[n+j] = work[j]
|
||
}
|
||
j := nfxd
|
||
if nbmin <= nb && nb < sminmn && nx < sminmn {
|
||
// Use blocked code initially.
|
||
|
||
// Compute factorization.
|
||
var fjb int
|
||
for topbmn := minmn - nx; j < topbmn; j += fjb {
|
||
jb := min(nb, topbmn-j)
|
||
|
||
// Factorize jb columns among columns j:n.
|
||
fjb = impl.Dlaqps(m, n-j, j, jb, a[j:], lda, jpvt[j:], tau[j:],
|
||
work[j:n], work[j+n:2*n], work[2*n:2*n+jb], work[2*n+jb:], jb)
|
||
}
|
||
}
|
||
|
||
// Use unblocked code to factor the last or only block.
|
||
if j < minmn {
|
||
impl.Dlaqp2(m, n-j, j, a[j:], lda, jpvt[j:], tau[j:],
|
||
work[j:n], work[j+n:2*n], work[2*n:])
|
||
}
|
||
|
||
work[0] = float64(iws)
|
||
}
|