mirror of
https://github.com/gonum/gonum.git
synced 2025-10-06 07:37:03 +08:00
183 lines
4.7 KiB
Go
183 lines
4.7 KiB
Go
// Copyright ©2014 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package path
|
|
|
|
import (
|
|
"container/heap"
|
|
"math"
|
|
"sort"
|
|
|
|
"gonum.org/v1/gonum/graph"
|
|
"gonum.org/v1/gonum/graph/simple"
|
|
)
|
|
|
|
// UndirectedWeighter is an undirected graph that returns edge weights.
|
|
type UndirectedWeighter interface {
|
|
graph.Undirected
|
|
graph.Weighter
|
|
}
|
|
|
|
// Prim generates a minimum spanning tree of g by greedy tree extension, placing
|
|
// the result in the destination, dst. If the edge weights of g are distinct
|
|
// it will be the unique minimum spanning tree of g. The destination is not cleared
|
|
// first. The weight of the minimum spanning tree is returned. If g is not connected,
|
|
// a minimum spanning forest will be constructed in dst and the sum of minimum
|
|
// spanning tree weights will be returned.
|
|
func Prim(dst graph.UndirectedBuilder, g UndirectedWeighter) float64 {
|
|
nodes := g.Nodes()
|
|
if len(nodes) == 0 {
|
|
return 0
|
|
}
|
|
|
|
q := &primQueue{
|
|
indexOf: make(map[int]int, len(nodes)-1),
|
|
nodes: make([]simple.Edge, 0, len(nodes)-1),
|
|
}
|
|
for _, u := range nodes[1:] {
|
|
heap.Push(q, simple.Edge{F: u, W: math.Inf(1)})
|
|
}
|
|
|
|
u := nodes[0]
|
|
for _, v := range g.From(u) {
|
|
w, ok := g.Weight(u, v)
|
|
if !ok {
|
|
panic("prim: unexpected invalid weight")
|
|
}
|
|
q.update(v, u, w)
|
|
}
|
|
|
|
var w float64
|
|
for q.Len() > 0 {
|
|
e := heap.Pop(q).(simple.Edge)
|
|
if e.To() != nil && g.HasEdgeBetween(e.From(), e.To()) {
|
|
dst.SetEdge(e)
|
|
w += e.Weight()
|
|
}
|
|
|
|
u = e.From()
|
|
for _, n := range g.From(u) {
|
|
if key, ok := q.key(n); ok {
|
|
w, ok := g.Weight(u, n)
|
|
if !ok {
|
|
panic("prim: unexpected invalid weight")
|
|
}
|
|
if w < key {
|
|
q.update(n, u, w)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return w
|
|
}
|
|
|
|
// primQueue is a Prim's priority queue. The priority queue is a
|
|
// queue of edge From nodes keyed on the minimum edge weight to
|
|
// a node in the set of nodes already connected to the minimum
|
|
// spanning forest.
|
|
type primQueue struct {
|
|
indexOf map[int]int
|
|
nodes []simple.Edge
|
|
}
|
|
|
|
func (q *primQueue) Less(i, j int) bool {
|
|
return q.nodes[i].Weight() < q.nodes[j].Weight()
|
|
}
|
|
|
|
func (q *primQueue) Swap(i, j int) {
|
|
q.indexOf[q.nodes[i].From().ID()] = j
|
|
q.indexOf[q.nodes[j].From().ID()] = i
|
|
q.nodes[i], q.nodes[j] = q.nodes[j], q.nodes[i]
|
|
}
|
|
|
|
func (q *primQueue) Len() int {
|
|
return len(q.nodes)
|
|
}
|
|
|
|
func (q *primQueue) Push(x interface{}) {
|
|
n := x.(simple.Edge)
|
|
q.indexOf[n.From().ID()] = len(q.nodes)
|
|
q.nodes = append(q.nodes, n)
|
|
}
|
|
|
|
func (q *primQueue) Pop() interface{} {
|
|
n := q.nodes[len(q.nodes)-1]
|
|
q.nodes = q.nodes[:len(q.nodes)-1]
|
|
delete(q.indexOf, n.From().ID())
|
|
return n
|
|
}
|
|
|
|
// key returns the key for the node u and whether the node is
|
|
// in the queue. If the node is not in the queue, key is returned
|
|
// as +Inf.
|
|
func (q *primQueue) key(u graph.Node) (key float64, ok bool) {
|
|
i, ok := q.indexOf[u.ID()]
|
|
if !ok {
|
|
return math.Inf(1), false
|
|
}
|
|
return q.nodes[i].Weight(), ok
|
|
}
|
|
|
|
// update updates u's position in the queue with the new closest
|
|
// MST-connected neighbour, v, and the key weight between u and v.
|
|
func (q *primQueue) update(u, v graph.Node, key float64) {
|
|
id := u.ID()
|
|
i, ok := q.indexOf[id]
|
|
if !ok {
|
|
return
|
|
}
|
|
q.nodes[i].T = v
|
|
q.nodes[i].W = key
|
|
heap.Fix(q, i)
|
|
}
|
|
|
|
// UndirectedWeightLister is an undirected graph that returns edge weights and
|
|
// the set of edges in the graph.
|
|
type UndirectedWeightLister interface {
|
|
UndirectedWeighter
|
|
Edges() []graph.Edge
|
|
}
|
|
|
|
// Kruskal generates a minimum spanning tree of g by greedy tree coalescence, placing
|
|
// the result in the destination, dst. If the edge weights of g are distinct
|
|
// it will be the unique minimum spanning tree of g. The destination is not cleared
|
|
// first. The weight of the minimum spanning tree is returned. If g is not connected,
|
|
// a minimum spanning forest will be constructed in dst and the sum of minimum
|
|
// spanning tree weights will be returned.
|
|
func Kruskal(dst graph.UndirectedBuilder, g UndirectedWeightLister) float64 {
|
|
edges := g.Edges()
|
|
ascend := make([]simple.Edge, 0, len(edges))
|
|
for _, e := range edges {
|
|
u := e.From()
|
|
v := e.To()
|
|
w, ok := g.Weight(u, v)
|
|
if !ok {
|
|
panic("kruskal: unexpected invalid weight")
|
|
}
|
|
ascend = append(ascend, simple.Edge{F: u, T: v, W: w})
|
|
}
|
|
sort.Sort(byWeight(ascend))
|
|
|
|
ds := newDisjointSet()
|
|
for _, node := range g.Nodes() {
|
|
ds.makeSet(node.ID())
|
|
}
|
|
|
|
var w float64
|
|
for _, e := range ascend {
|
|
if s1, s2 := ds.find(e.From().ID()), ds.find(e.To().ID()); s1 != s2 {
|
|
ds.union(s1, s2)
|
|
dst.SetEdge(e)
|
|
w += e.Weight()
|
|
}
|
|
}
|
|
return w
|
|
}
|
|
|
|
type byWeight []simple.Edge
|
|
|
|
func (e byWeight) Len() int { return len(e) }
|
|
func (e byWeight) Less(i, j int) bool { return e[i].Weight() < e[j].Weight() }
|
|
func (e byWeight) Swap(i, j int) { e[i], e[j] = e[j], e[i] }
|