Files
gonum/graph/community/louvain_undirected_test.go
2017-05-23 00:03:03 -06:00

649 lines
18 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package community
import (
"math"
"math/rand"
"reflect"
"sort"
"testing"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/graph/internal/ordered"
"gonum.org/v1/gonum/graph/simple"
)
var communityUndirectedQTests = []struct {
name string
g []set
structures []structure
wantLevels []level
}{
// The java reference implementation is available from http://www.ludowaltman.nl/slm/.
{
name: "unconnected",
g: unconnected,
structures: []structure{
{
resolution: 1,
memberships: []set{
0: linksTo(0),
1: linksTo(1),
2: linksTo(2),
3: linksTo(3),
4: linksTo(4),
5: linksTo(5),
},
want: math.NaN(),
},
},
wantLevels: []level{
{
q: math.Inf(-1), // Here math.Inf(-1) is used as a place holder for NaN to allow use of reflect.DeepEqual.
communities: [][]graph.Node{
{simple.Node(0)},
{simple.Node(1)},
{simple.Node(2)},
{simple.Node(3)},
{simple.Node(4)},
{simple.Node(5)},
},
},
},
},
{
name: "small_dumbell",
g: smallDumbell,
structures: []structure{
{
resolution: 1,
// community structure and modularity calculated by java reference implementation.
memberships: []set{
0: linksTo(0, 1, 2),
1: linksTo(3, 4, 5),
},
want: 0.357, tol: 1e-3,
},
{
resolution: 1,
memberships: []set{
0: linksTo(0, 1, 2, 3, 4, 5),
},
// theoretical expectation.
want: 0, tol: 1e-14,
},
},
wantLevels: []level{
{
q: 0.35714285714285715,
communities: [][]graph.Node{
{simple.Node(0), simple.Node(1), simple.Node(2)},
{simple.Node(3), simple.Node(4), simple.Node(5)},
},
},
{
q: -0.17346938775510204,
communities: [][]graph.Node{
{simple.Node(0)},
{simple.Node(1)},
{simple.Node(2)},
{simple.Node(3)},
{simple.Node(4)},
{simple.Node(5)},
},
},
},
},
{
name: "zachary",
g: zachary,
structures: []structure{
{
resolution: 1,
// community structure and modularity from doi: 10.1140/epjb/e2013-40829-0
memberships: []set{
0: linksTo(0, 1, 2, 3, 7, 11, 12, 13, 17, 19, 21),
1: linksTo(4, 5, 6, 10, 16),
2: linksTo(8, 9, 14, 15, 18, 20, 22, 26, 29, 30, 32, 33),
3: linksTo(23, 24, 25, 27, 28, 31),
},
// Noted to be the optimal modularisation in the paper above.
want: 0.4198, tol: 1e-4,
},
{
resolution: 0.5,
// community structure and modularity calculated by java reference implementation.
memberships: []set{
0: linksTo(0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 16, 17, 19, 21),
1: linksTo(8, 14, 15, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33),
},
want: 0.6218, tol: 1e-3,
},
{
resolution: 2,
// community structure and modularity calculated by java reference implementation.
memberships: []set{
0: linksTo(14, 18, 20, 22, 32, 33, 15),
1: linksTo(0, 1, 11, 17, 19, 21),
2: linksTo(2, 3, 7, 9, 12, 13),
3: linksTo(4, 5, 6, 10, 16),
4: linksTo(24, 25, 28, 31),
5: linksTo(23, 26, 27, 29),
6: linksTo(8, 30),
},
want: 0.1645, tol: 1e-3,
},
},
wantLevels: []level{
{
q: 0.4197896120973044,
communities: [][]graph.Node{
{simple.Node(0), simple.Node(1), simple.Node(2), simple.Node(3), simple.Node(7), simple.Node(11), simple.Node(12), simple.Node(13), simple.Node(17), simple.Node(19), simple.Node(21)},
{simple.Node(4), simple.Node(5), simple.Node(6), simple.Node(10), simple.Node(16)},
{simple.Node(8), simple.Node(9), simple.Node(14), simple.Node(15), simple.Node(18), simple.Node(20), simple.Node(22), simple.Node(26), simple.Node(29), simple.Node(30), simple.Node(32), simple.Node(33)},
{simple.Node(23), simple.Node(24), simple.Node(25), simple.Node(27), simple.Node(28), simple.Node(31)},
},
},
{
q: 0.39907955292570674,
communities: [][]graph.Node{
{simple.Node(0), simple.Node(1), simple.Node(2), simple.Node(3), simple.Node(7), simple.Node(11), simple.Node(12), simple.Node(13), simple.Node(17), simple.Node(19), simple.Node(21)},
{simple.Node(4), simple.Node(10)},
{simple.Node(5), simple.Node(6), simple.Node(16)},
{simple.Node(8), simple.Node(9), simple.Node(14), simple.Node(15), simple.Node(18), simple.Node(20), simple.Node(22), simple.Node(26), simple.Node(29), simple.Node(30), simple.Node(32), simple.Node(33)},
{simple.Node(23), simple.Node(24), simple.Node(25), simple.Node(27), simple.Node(28), simple.Node(31)},
},
},
{
q: -0.04980276134122286,
communities: [][]graph.Node{
{simple.Node(0)},
{simple.Node(1)},
{simple.Node(2)},
{simple.Node(3)},
{simple.Node(4)},
{simple.Node(5)},
{simple.Node(6)},
{simple.Node(7)},
{simple.Node(8)},
{simple.Node(9)},
{simple.Node(10)},
{simple.Node(11)},
{simple.Node(12)},
{simple.Node(13)},
{simple.Node(14)},
{simple.Node(15)},
{simple.Node(16)},
{simple.Node(17)},
{simple.Node(18)},
{simple.Node(19)},
{simple.Node(20)},
{simple.Node(21)},
{simple.Node(22)},
{simple.Node(23)},
{simple.Node(24)},
{simple.Node(25)},
{simple.Node(26)},
{simple.Node(27)},
{simple.Node(28)},
{simple.Node(29)},
{simple.Node(30)},
{simple.Node(31)},
{simple.Node(32)},
{simple.Node(33)},
},
},
},
},
{
name: "blondel",
g: blondel,
structures: []structure{
{
resolution: 1,
// community structure and modularity calculated by java reference implementation.
memberships: []set{
0: linksTo(0, 1, 2, 3, 4, 5, 6, 7),
1: linksTo(8, 9, 10, 11, 12, 13, 14, 15),
},
want: 0.3922, tol: 1e-4,
},
},
wantLevels: []level{
{
q: 0.39221938775510207,
communities: [][]graph.Node{
{simple.Node(0), simple.Node(1), simple.Node(2), simple.Node(3), simple.Node(4), simple.Node(5), simple.Node(6), simple.Node(7)},
{simple.Node(8), simple.Node(9), simple.Node(10), simple.Node(11), simple.Node(12), simple.Node(13), simple.Node(14), simple.Node(15)},
},
},
{
q: 0.34630102040816324,
communities: [][]graph.Node{
{simple.Node(0), simple.Node(1), simple.Node(2), simple.Node(4), simple.Node(5)},
{simple.Node(3), simple.Node(6), simple.Node(7)},
{simple.Node(8), simple.Node(9), simple.Node(10), simple.Node(12), simple.Node(14), simple.Node(15)},
{simple.Node(11), simple.Node(13)},
},
},
{
q: -0.07142857142857144,
communities: [][]graph.Node{
{simple.Node(0)},
{simple.Node(1)},
{simple.Node(2)},
{simple.Node(3)},
{simple.Node(4)},
{simple.Node(5)},
{simple.Node(6)},
{simple.Node(7)},
{simple.Node(8)},
{simple.Node(9)},
{simple.Node(10)},
{simple.Node(11)},
{simple.Node(12)},
{simple.Node(13)},
{simple.Node(14)},
{simple.Node(15)},
},
},
},
},
}
func TestCommunityQUndirected(t *testing.T) {
for _, test := range communityUndirectedQTests {
g := simple.NewUndirectedGraph(0, 0)
for u, e := range test.g {
// Add nodes that are not defined by an edge.
if !g.Has(simple.Node(u)) {
g.AddNode(simple.Node(u))
}
for v := range e {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v), W: 1})
}
}
for _, structure := range test.structures {
communities := make([][]graph.Node, len(structure.memberships))
for i, c := range structure.memberships {
for n := range c {
communities[i] = append(communities[i], simple.Node(n))
}
}
got := Q(g, communities, structure.resolution)
if !floats.EqualWithinAbsOrRel(got, structure.want, structure.tol, structure.tol) && !math.IsNaN(structure.want) {
for _, c := range communities {
sort.Sort(ordered.ByID(c))
}
t.Errorf("unexpected Q value for %q %v: got: %v want: %v",
test.name, communities, got, structure.want)
}
}
}
}
func TestCommunityDeltaQUndirected(t *testing.T) {
tests:
for _, test := range communityUndirectedQTests {
g := simple.NewUndirectedGraph(0, 0)
for u, e := range test.g {
// Add nodes that are not defined by an edge.
if !g.Has(simple.Node(u)) {
g.AddNode(simple.Node(u))
}
for v := range e {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v), W: 1})
}
}
rnd := rand.New(rand.NewSource(1)).Intn
for _, structure := range test.structures {
communityOf := make(map[int]int)
communities := make([][]graph.Node, len(structure.memberships))
for i, c := range structure.memberships {
for n := range c {
communityOf[n] = i
communities[i] = append(communities[i], simple.Node(n))
}
sort.Sort(ordered.ByID(communities[i]))
}
before := Q(g, communities, structure.resolution)
l := newUndirectedLocalMover(reduceUndirected(g, nil), communities, structure.resolution)
if l == nil {
if !math.IsNaN(before) {
t.Errorf("unexpected nil localMover with non-NaN Q graph: Q=%.4v", before)
}
continue tests
}
// This is done to avoid run-to-run
// variation due to map iteration order.
sort.Sort(ordered.ByID(l.nodes))
l.shuffle(rnd)
for _, target := range l.nodes {
got, gotDst, gotSrc := l.deltaQ(target)
want, wantDst := math.Inf(-1), -1
migrated := make([][]graph.Node, len(structure.memberships))
for i, c := range structure.memberships {
for n := range c {
if n == target.ID() {
continue
}
migrated[i] = append(migrated[i], simple.Node(n))
}
sort.Sort(ordered.ByID(migrated[i]))
}
for i, c := range structure.memberships {
if i == communityOf[target.ID()] {
continue
}
connected := false
for n := range c {
if g.HasEdgeBetween(simple.Node(n), target) {
connected = true
break
}
}
if !connected {
continue
}
migrated[i] = append(migrated[i], target)
after := Q(g, migrated, structure.resolution)
migrated[i] = migrated[i][:len(migrated[i])-1]
if after-before > want {
want = after - before
wantDst = i
}
}
if !floats.EqualWithinAbsOrRel(got, want, structure.tol, structure.tol) || gotDst != wantDst {
t.Errorf("unexpected result moving n=%d in c=%d of %s/%.4v: got: %.4v,%d want: %.4v,%d"+
"\n\t%v\n\t%v",
target.ID(), communityOf[target.ID()], test.name, structure.resolution, got, gotDst, want, wantDst,
communities, migrated)
}
if gotSrc.community != communityOf[target.ID()] {
t.Errorf("unexpected source community index: got: %d want: %d", gotSrc, communityOf[target.ID()])
} else if communities[gotSrc.community][gotSrc.node].ID() != target.ID() {
wantNodeIdx := -1
for i, n := range communities[gotSrc.community] {
if n.ID() == target.ID() {
wantNodeIdx = i
break
}
}
t.Errorf("unexpected source node index: got: %d want: %d", gotSrc.node, wantNodeIdx)
}
}
}
}
}
func TestReduceQConsistencyUndirected(t *testing.T) {
tests:
for _, test := range communityUndirectedQTests {
g := simple.NewUndirectedGraph(0, 0)
for u, e := range test.g {
// Add nodes that are not defined by an edge.
if !g.Has(simple.Node(u)) {
g.AddNode(simple.Node(u))
}
for v := range e {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v), W: 1})
}
}
for _, structure := range test.structures {
if math.IsNaN(structure.want) {
continue tests
}
communities := make([][]graph.Node, len(structure.memberships))
for i, c := range structure.memberships {
for n := range c {
communities[i] = append(communities[i], simple.Node(n))
}
sort.Sort(ordered.ByID(communities[i]))
}
gQ := Q(g, communities, structure.resolution)
gQnull := Q(g, nil, 1)
cg0 := reduceUndirected(g, nil)
cg0Qnull := Q(cg0, cg0.Structure(), 1)
if !floats.EqualWithinAbsOrRel(gQnull, cg0Qnull, structure.tol, structure.tol) {
t.Errorf("disagreement between null Q from method: %v and function: %v", cg0Qnull, gQnull)
}
cg0Q := Q(cg0, communities, structure.resolution)
if !floats.EqualWithinAbsOrRel(gQ, cg0Q, structure.tol, structure.tol) {
t.Errorf("unexpected Q result after initial reduction: got: %v want :%v", cg0Q, gQ)
}
cg1 := reduceUndirected(cg0, communities)
cg1Q := Q(cg1, cg1.Structure(), structure.resolution)
if !floats.EqualWithinAbsOrRel(gQ, cg1Q, structure.tol, structure.tol) {
t.Errorf("unexpected Q result after second reduction: got: %v want :%v", cg1Q, gQ)
}
}
}
}
var localUndirectedMoveTests = []struct {
name string
g []set
structures []moveStructures
}{
{
name: "blondel",
g: blondel,
structures: []moveStructures{
{
memberships: []set{
0: linksTo(0, 1, 2, 4, 5),
1: linksTo(3, 6, 7),
2: linksTo(8, 9, 10, 12, 14, 15),
3: linksTo(11, 13),
},
targetNodes: []graph.Node{simple.Node(0)},
resolution: 1,
tol: 1e-14,
},
{
memberships: []set{
0: linksTo(0, 1, 2, 4, 5),
1: linksTo(3, 6, 7),
2: linksTo(8, 9, 10, 12, 14, 15),
3: linksTo(11, 13),
},
targetNodes: []graph.Node{simple.Node(3)},
resolution: 1,
tol: 1e-14,
},
{
memberships: []set{
0: linksTo(0, 1, 2, 4, 5),
1: linksTo(3, 6, 7),
2: linksTo(8, 9, 10, 12, 14, 15),
3: linksTo(11, 13),
},
// Case to demonstrate when A_aa != k_a^𝛼.
targetNodes: []graph.Node{simple.Node(3), simple.Node(2)},
resolution: 1,
tol: 1e-14,
},
},
},
}
func TestMoveLocalUndirected(t *testing.T) {
for _, test := range localUndirectedMoveTests {
g := simple.NewUndirectedGraph(0, 0)
for u, e := range test.g {
// Add nodes that are not defined by an edge.
if !g.Has(simple.Node(u)) {
g.AddNode(simple.Node(u))
}
for v := range e {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v), W: 1})
}
}
for _, structure := range test.structures {
communities := make([][]graph.Node, len(structure.memberships))
for i, c := range structure.memberships {
for n := range c {
communities[i] = append(communities[i], simple.Node(n))
}
sort.Sort(ordered.ByID(communities[i]))
}
r := reduceUndirected(reduceUndirected(g, nil), communities)
l := newUndirectedLocalMover(r, r.communities, structure.resolution)
for _, n := range structure.targetNodes {
dQ, dst, src := l.deltaQ(n)
if dQ > 0 {
before := Q(r, l.communities, structure.resolution)
l.move(dst, src)
after := Q(r, l.communities, structure.resolution)
want := after - before
if !floats.EqualWithinAbsOrRel(dQ, want, structure.tol, structure.tol) {
t.Errorf("unexpected deltaQ: got: %v want: %v", dQ, want)
}
}
}
}
}
}
func TestModularizeUndirected(t *testing.T) {
const louvainIterations = 20
for _, test := range communityUndirectedQTests {
g := simple.NewUndirectedGraph(0, 0)
for u, e := range test.g {
// Add nodes that are not defined by an edge.
if !g.Has(simple.Node(u)) {
g.AddNode(simple.Node(u))
}
for v := range e {
g.SetEdge(simple.Edge{F: simple.Node(u), T: simple.Node(v), W: 1})
}
}
if test.structures[0].resolution != 1 {
panic("bad test: expect resolution=1")
}
want := make([][]graph.Node, len(test.structures[0].memberships))
for i, c := range test.structures[0].memberships {
for n := range c {
want[i] = append(want[i], simple.Node(n))
}
sort.Sort(ordered.ByID(want[i]))
}
sort.Sort(ordered.BySliceIDs(want))
var (
got *ReducedUndirected
bestQ = math.Inf(-1)
)
// Modularize is randomised so we do this to
// ensure the level tests are consistent.
src := rand.New(rand.NewSource(1))
for i := 0; i < louvainIterations; i++ {
r := Modularize(g, 1, src).(*ReducedUndirected)
if q := Q(r, nil, 1); q > bestQ || math.IsNaN(q) {
bestQ = q
got = r
if math.IsNaN(q) {
// Don't try again for non-connected case.
break
}
}
var qs []float64
for p := r; p != nil; p = p.Expanded().(*ReducedUndirected) {
qs = append(qs, Q(p, nil, 1))
}
// Recovery of Q values is reversed.
if reverse(qs); !sort.Float64sAreSorted(qs) {
t.Errorf("Q values not monotonically increasing: %.5v", qs)
}
}
gotCommunities := got.Communities()
for _, c := range gotCommunities {
sort.Sort(ordered.ByID(c))
}
sort.Sort(ordered.BySliceIDs(gotCommunities))
if !reflect.DeepEqual(gotCommunities, want) {
t.Errorf("unexpected community membership for %s Q=%.4v:\n\tgot: %v\n\twant:%v",
test.name, bestQ, gotCommunities, want)
continue
}
var levels []level
for p := got; p != nil; p = p.Expanded().(*ReducedUndirected) {
var communities [][]graph.Node
if p.parent != nil {
communities = p.parent.Communities()
for _, c := range communities {
sort.Sort(ordered.ByID(c))
}
sort.Sort(ordered.BySliceIDs(communities))
} else {
communities = reduceUndirected(g, nil).Communities()
}
q := Q(p, nil, 1)
if math.IsNaN(q) {
// Use an equalable flag value in place of NaN.
q = math.Inf(-1)
}
levels = append(levels, level{q: q, communities: communities})
}
if !reflect.DeepEqual(levels, test.wantLevels) {
t.Errorf("unexpected level structure:\n\tgot: %v\n\twant:%v", levels, test.wantLevels)
}
}
}
func TestNonContiguousUndirected(t *testing.T) {
g := simple.NewUndirectedGraph(0, 0)
for _, e := range []simple.Edge{
{F: simple.Node(0), T: simple.Node(1), W: 1},
{F: simple.Node(4), T: simple.Node(5), W: 1},
} {
g.SetEdge(e)
}
func() {
defer func() {
r := recover()
if r != nil {
t.Error("unexpected panic with non-contiguous ID range")
}
}()
Modularize(g, 1, nil)
}()
}
func BenchmarkLouvain(b *testing.B) {
src := rand.New(rand.NewSource(1))
for i := 0; i < b.N; i++ {
Modularize(dupGraph, 1, src)
}
}