Files
gonum/blas/native/level3double.go
2017-05-23 00:03:03 -06:00

832 lines
17 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/internal/asm/f64"
)
var _ blas.Float64Level3 = Implementation{}
// Dtrsm solves
// A * X = alpha * B, if tA == blas.NoTrans side == blas.Left,
// A^T * X = alpha * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Left,
// X * A = alpha * B, if tA == blas.NoTrans side == blas.Right,
// X * A^T = alpha * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Right,
// where A is an n×n or m×m triangular matrix, X is an m×n matrix, and alpha is a
// scalar.
//
// At entry to the function, X contains the values of B, and the result is
// stored in place into X.
//
// No check is made that A is invertible.
func (Implementation) Dtrsm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
if ldb < n {
panic(badLdB)
}
var k int
if s == blas.Left {
k = m
} else {
k = n
}
if lda*(k-1)+k > len(a) || lda < max(1, k) {
panic(badLdA)
}
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
panic(badLdB)
}
if m == 0 || n == 0 {
return
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := m - 1; i >= 0; i-- {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
for j := range btmp {
btmp[j] *= alpha
}
}
for ka, va := range a[i*lda+i+1 : i*lda+m] {
k := ka + i + 1
if va != 0 {
f64.AxpyUnitaryTo(btmp, -va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
for j := 0; j < n; j++ {
btmp[j] *= tmp
}
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
for j := 0; j < n; j++ {
btmp[j] *= alpha
}
}
for k, va := range a[i*lda : i*lda+i] {
if va != 0 {
f64.AxpyUnitaryTo(btmp, -va, b[k*ldb:k*ldb+n], btmp)
}
}
if nonUnit {
tmp := 1 / a[i*lda+i]
for j := 0; j < n; j++ {
btmp[j] *= tmp
}
}
}
return
}
// Cases where a is transposed
if ul == blas.Upper {
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
for ia, va := range a[k*lda+k+1 : k*lda+m] {
i := ia + k + 1
if va != 0 {
btmp := b[i*ldb : i*ldb+n]
f64.AxpyUnitaryTo(btmp, -va, btmpk, btmp)
}
}
if alpha != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= alpha
}
}
}
return
}
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
if nonUnit {
tmp := 1 / a[k*lda+k]
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
for i, va := range a[k*lda : k*lda+k] {
if va != 0 {
btmp := b[i*ldb : i*ldb+n]
f64.AxpyUnitaryTo(btmp, -va, btmpk, btmp)
}
}
if alpha != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= alpha
}
}
}
return
}
// Cases where a is to the right of X.
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
if alpha != 1 {
for j := 0; j < n; j++ {
btmp[j] *= alpha
}
}
for k, vb := range btmp {
if vb != 0 {
if btmp[k] != 0 {
if nonUnit {
btmp[k] /= a[k*lda+k]
}
btmpk := btmp[k+1 : n]
f64.AxpyUnitaryTo(btmpk, -btmp[k], a[k*lda+k+1:k*lda+n], btmpk)
}
}
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*lda : i*lda+n]
if alpha != 1 {
for j := 0; j < n; j++ {
btmp[j] *= alpha
}
}
for k := n - 1; k >= 0; k-- {
if btmp[k] != 0 {
if nonUnit {
btmp[k] /= a[k*lda+k]
}
f64.AxpyUnitaryTo(btmp, -btmp[k], a[k*lda:k*lda+k], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*lda : i*lda+n]
for j := n - 1; j >= 0; j-- {
tmp := alpha*btmp[j] - f64.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:])
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*lda : i*lda+n]
for j := 0; j < n; j++ {
tmp := alpha*btmp[j] - f64.DotUnitary(a[j*lda:j*lda+j], btmp)
if nonUnit {
tmp /= a[j*lda+j]
}
btmp[j] = tmp
}
}
}
// Dsymm performs one of
// C = alpha * A * B + beta * C, if side == blas.Left,
// C = alpha * B * A + beta * C, if side == blas.Right,
// where A is an n×n or m×m symmetric matrix, B and C are m×n matrices, and alpha
// is a scalar.
func (Implementation) Dsymm(s blas.Side, ul blas.Uplo, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
if s != blas.Right && s != blas.Left {
panic("goblas: bad side")
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
var k int
if s == blas.Left {
k = m
} else {
k = n
}
if lda*(k-1)+k > len(a) || lda < max(1, k) {
panic(badLdA)
}
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
panic(badLdB)
}
if ldc*(m-1)+n > len(c) || ldc < max(1, n) {
panic(badLdC)
}
if m == 0 || n == 0 {
return
}
if alpha == 0 && beta == 1 {
return
}
if alpha == 0 {
if beta == 0 {
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < m; i++ {
ctmp := c[i*ldc : i*ldc+n]
for j := 0; j < n; j++ {
ctmp[j] *= beta
}
}
return
}
isUpper := ul == blas.Upper
if s == blas.Left {
for i := 0; i < m; i++ {
atmp := alpha * a[i*lda+i]
btmp := b[i*ldb : i*ldb+n]
ctmp := c[i*ldc : i*ldc+n]
for j, v := range btmp {
ctmp[j] *= beta
ctmp[j] += atmp * v
}
for k := 0; k < i; k++ {
var atmp float64
if isUpper {
atmp = a[k*lda+i]
} else {
atmp = a[i*lda+k]
}
atmp *= alpha
ctmp := c[i*ldc : i*ldc+n]
f64.AxpyUnitaryTo(ctmp, atmp, b[k*ldb:k*ldb+n], ctmp)
}
for k := i + 1; k < m; k++ {
var atmp float64
if isUpper {
atmp = a[i*lda+k]
} else {
atmp = a[k*lda+i]
}
atmp *= alpha
ctmp := c[i*ldc : i*ldc+n]
f64.AxpyUnitaryTo(ctmp, atmp, b[k*ldb:k*ldb+n], ctmp)
}
}
return
}
if isUpper {
for i := 0; i < m; i++ {
for j := n - 1; j >= 0; j-- {
tmp := alpha * b[i*ldb+j]
var tmp2 float64
atmp := a[j*lda+j+1 : j*lda+n]
btmp := b[i*ldb+j+1 : i*ldb+n]
ctmp := c[i*ldc+j+1 : i*ldc+n]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
return
}
for i := 0; i < m; i++ {
for j := 0; j < n; j++ {
tmp := alpha * b[i*ldb+j]
var tmp2 float64
atmp := a[j*lda : j*lda+j]
btmp := b[i*ldb : i*ldb+j]
ctmp := c[i*ldc : i*ldc+j]
for k, v := range atmp {
ctmp[k] += tmp * v
tmp2 += btmp[k] * v
}
c[i*ldc+j] *= beta
c[i*ldc+j] += tmp*a[j*lda+j] + alpha*tmp2
}
}
}
// Dsyrk performs the symmetric rank-k operation
// C = alpha * A * A^T + beta*C
// C is an n×n symmetric matrix. A is an n×k matrix if tA == blas.NoTrans, and
// a k×n matrix otherwise. alpha and beta are scalars.
func (Implementation) Dsyrk(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, beta float64, c []float64, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
if ldc < n {
panic(badLdC)
}
var row, col int
if tA == blas.NoTrans {
row, col = n, k
} else {
row, col = k, n
}
if lda*(row-1)+col > len(a) || lda < max(1, col) {
panic(badLdA)
}
if ldc*(n-1)+n > len(c) || ldc < max(1, n) {
panic(badLdC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
atmp := a[i*lda : i*lda+k]
for jc, vc := range ctmp {
j := jc + i
ctmp[jc] = vc*beta + alpha*f64.DotUnitary(atmp, a[j*lda:j*lda+k])
}
}
return
}
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
for j, vc := range c[i*ldc : i*ldc+i+1] {
c[i*ldc+j] = vc*beta + alpha*f64.DotUnitary(a[j*lda:j*lda+k], atmp)
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f64.AxpyUnitaryTo(ctmp, tmp, a[l*lda+i:l*lda+n], ctmp)
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 0 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp := alpha * a[l*lda+i]
if tmp != 0 {
f64.AxpyUnitaryTo(ctmp, tmp, a[l*lda:l*lda+i+1], ctmp)
}
}
}
}
// Dsyr2k performs the symmetric rank 2k operation
// C = alpha * A * B^T + alpha * B * A^T + beta * C
// where C is an n×n symmetric matrix. A and B are n×k matrices if
// tA == NoTrans and k×n otherwise. alpha and beta are scalars.
func (Implementation) Dsyr2k(ul blas.Uplo, tA blas.Transpose, n, k int, alpha float64, a []float64, lda int, b []float64, ldb int, beta float64, c []float64, ldc int) {
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.Trans && tA != blas.NoTrans && tA != blas.ConjTrans {
panic(badTranspose)
}
if n < 0 {
panic(nLT0)
}
if k < 0 {
panic(kLT0)
}
if ldc < n {
panic(badLdC)
}
var row, col int
if tA == blas.NoTrans {
row, col = n, k
} else {
row, col = k, n
}
if lda*(row-1)+col > len(a) || lda < max(1, col) {
panic(badLdA)
}
if ldb*(row-1)+col > len(b) || ldb < max(1, col) {
panic(badLdB)
}
if ldc*(n-1)+n > len(c) || ldc < max(1, n) {
panic(badLdC)
}
if alpha == 0 {
if beta == 0 {
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] = 0
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
for j := range ctmp {
ctmp[j] *= beta
}
}
return
}
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc+i : i*ldc+n]
for jc := range ctmp {
j := i + jc
var tmp1, tmp2 float64
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[jc] *= beta
ctmp[jc] += alpha * (tmp1 + tmp2)
}
}
return
}
for i := 0; i < n; i++ {
atmp := a[i*lda : i*lda+k]
btmp := b[i*ldb : i*ldb+k]
ctmp := c[i*ldc : i*ldc+i+1]
for j := 0; j <= i; j++ {
var tmp1, tmp2 float64
binner := b[j*ldb : j*ldb+k]
for l, v := range a[j*lda : j*lda+k] {
tmp1 += v * btmp[l]
tmp2 += atmp[l] * binner[l]
}
ctmp[j] *= beta
ctmp[j] += alpha * (tmp1 + tmp2)
}
}
return
}
if ul == blas.Upper {
for i := 0; i < n; i++ {
ctmp := c[i*ldc+i : i*ldc+n]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*lda+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb+i : l*ldb+n]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda+i : l*lda+n] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
return
}
for i := 0; i < n; i++ {
ctmp := c[i*ldc : i*ldc+i+1]
if beta != 1 {
for j := range ctmp {
ctmp[j] *= beta
}
}
for l := 0; l < k; l++ {
tmp1 := alpha * b[l*lda+i]
tmp2 := alpha * a[l*lda+i]
btmp := b[l*ldb : l*ldb+i+1]
if tmp1 != 0 || tmp2 != 0 {
for j, v := range a[l*lda : l*lda+i+1] {
ctmp[j] += v*tmp1 + btmp[j]*tmp2
}
}
}
}
}
// Dtrmm performs
// B = alpha * A * B, if tA == blas.NoTrans and side == blas.Left,
// B = alpha * A^T * B, if tA == blas.Trans or blas.ConjTrans, and side == blas.Left,
// B = alpha * B * A, if tA == blas.NoTrans and side == blas.Right,
// B = alpha * B * A^T, if tA == blas.Trans or blas.ConjTrans, and side == blas.Right,
// where A is an n×n or m×m triangular matrix, and B is an m×n matrix.
func (Implementation) Dtrmm(s blas.Side, ul blas.Uplo, tA blas.Transpose, d blas.Diag, m, n int, alpha float64, a []float64, lda int, b []float64, ldb int) {
if s != blas.Left && s != blas.Right {
panic(badSide)
}
if ul != blas.Lower && ul != blas.Upper {
panic(badUplo)
}
if tA != blas.NoTrans && tA != blas.Trans && tA != blas.ConjTrans {
panic(badTranspose)
}
if d != blas.NonUnit && d != blas.Unit {
panic(badDiag)
}
if m < 0 {
panic(mLT0)
}
if n < 0 {
panic(nLT0)
}
var k int
if s == blas.Left {
k = m
} else {
k = n
}
if lda*(k-1)+k > len(a) || lda < max(1, k) {
panic(badLdA)
}
if ldb*(m-1)+n > len(b) || ldb < max(1, n) {
panic(badLdB)
}
if alpha == 0 {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] = 0
}
}
return
}
nonUnit := d == blas.NonUnit
if s == blas.Left {
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] *= tmp
}
for ka, va := range a[i*lda+i+1 : i*lda+m] {
k := ka + i + 1
tmp := alpha * va
if tmp != 0 {
f64.AxpyUnitaryTo(btmp, tmp, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
for i := m - 1; i >= 0; i-- {
tmp := alpha
if nonUnit {
tmp *= a[i*lda+i]
}
btmp := b[i*ldb : i*ldb+n]
for j := range btmp {
btmp[j] *= tmp
}
for k, va := range a[i*lda : i*lda+i] {
tmp := alpha * va
if tmp != 0 {
f64.AxpyUnitaryTo(btmp, tmp, b[k*ldb:k*ldb+n], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for k := m - 1; k >= 0; k-- {
btmpk := b[k*ldb : k*ldb+n]
for ia, va := range a[k*lda+k+1 : k*lda+m] {
i := ia + k + 1
btmp := b[i*ldb : i*ldb+n]
tmp := alpha * va
if tmp != 0 {
f64.AxpyUnitaryTo(btmp, tmp, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
}
return
}
for k := 0; k < m; k++ {
btmpk := b[k*ldb : k*ldb+n]
for i, va := range a[k*lda : k*lda+k] {
btmp := b[i*ldb : i*ldb+n]
tmp := alpha * va
if tmp != 0 {
f64.AxpyUnitaryTo(btmp, tmp, btmpk, btmp)
}
}
tmp := alpha
if nonUnit {
tmp *= a[k*lda+k]
}
if tmp != 1 {
for j := 0; j < n; j++ {
btmpk[j] *= tmp
}
}
}
return
}
// Cases where a is on the right
if tA == blas.NoTrans {
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := n - 1; k >= 0; k-- {
tmp := alpha * btmp[k]
if tmp != 0 {
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
for ja, v := range a[k*lda+k+1 : k*lda+n] {
j := ja + k + 1
btmp[j] += tmp * v
}
}
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for k := 0; k < n; k++ {
tmp := alpha * btmp[k]
if tmp != 0 {
btmp[k] = tmp
if nonUnit {
btmp[k] *= a[k*lda+k]
}
f64.AxpyUnitaryTo(btmp, tmp, a[k*lda:k*lda+k], btmp)
}
}
}
return
}
// Cases where a is transposed.
if ul == blas.Upper {
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j, vb := range btmp {
tmp := vb
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f64.DotUnitary(a[j*lda+j+1:j*lda+n], btmp[j+1:n])
btmp[j] = alpha * tmp
}
}
return
}
for i := 0; i < m; i++ {
btmp := b[i*ldb : i*ldb+n]
for j := n - 1; j >= 0; j-- {
tmp := btmp[j]
if nonUnit {
tmp *= a[j*lda+j]
}
tmp += f64.DotUnitary(a[j*lda:j*lda+j], btmp[:j])
btmp[j] = alpha * tmp
}
}
}