Files
gonum/fourier/cfft.go
2018-04-13 13:22:53 +09:30

1031 lines
27 KiB
Go

// Copyright ©2018 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This is a translation of the FFTPACK cfft functions by
// Paul N Swarztrauber, placed in the public domain at
// http://www.netlib.org/fftpack/.
package fourier
import "math"
// cffti initializes the array work which is used in both cfftf
// and cfftb. the prime factorization of n together with a
// tabulation of the trigonometric functions are computed and
// stored in work.
//
// input parameter
//
// n the length of the sequence to be transformed.
//
// output parameters
//
// work a work array which must be dimensioned at least 4*n.
// the same work array can be used for both cfftf and cfftb
// as long as n remains unchanged. different work arrays
// are required for different values of n. the contents of
// work must not be changed between calls of cfftf or cfftb.
//
// ifac a work array containing the factors of n. ifac must have
// length 15.
func cffti(n int, work []float64, ifac []int) {
if n == 1 {
return
}
cffti1(n, work[2*n:], ifac)
}
func cffti1(n int, wa []float64, ifac []int) {
ntryh := [4]int{3, 4, 2, 5}
nl := n
nf := 0
outer:
for j, ntry := 0, 0; ; j++ {
if j < 4 {
ntry = ntryh[j]
} else {
ntry += 2
}
for {
if nl%ntry != 0 {
continue outer
}
ifac[nf+2] = ntry
nl /= ntry
nf++
if ntry == 2 && nf != 1 {
for i := 1; i < nf; i++ {
ib := nf - i + 1
ifac[ib+1] = ifac[ib]
}
ifac[2] = 2
}
if nl == 1 {
break outer
}
}
}
ifac[0] = n
ifac[1] = nf
argh := 2 * math.Pi / float64(n)
i := 1
l1 := 1
for k1 := 0; k1 < nf; k1++ {
ip := ifac[k1+2]
ld := 0
l2 := l1 * ip
ido := n / l2
idot := 2*ido + 2
for j := 0; j < ip-1; j++ {
i1 := i
wa[i-1] = 1
wa[i] = 0
ld += l1
var fi float64
argld := float64(ld) * argh
for ii := 3; ii < idot; ii += 2 {
i += 2
fi++
arg := fi * argld
wa[i-1] = math.Cos(arg)
wa[i] = math.Sin(arg)
}
if ip > 5 {
wa[i1-1] = wa[i-1]
wa[i1] = wa[i]
}
}
l1 = l2
}
}
// cfftf computes the forward complex discrete fourier
// transform (the fourier analysis). equivalently , cfftf computes
// the fourier coefficients of a complex periodic sequence.
// the transform is defined below at output parameter c.
//
// input parameters
//
// n the length of the array c to be transformed. the method
// is most efficient when n is a product of small primes.
// n may change so long as different work arrays are provided
//
// c a complex array of length n which contains the sequence
// to be transformed
//
// work a real work array which must be dimensioned at least 4*n.
// in the program that calls cfftf. the work array must be
// initialized by calling subroutine cffti(n,work) and a
// different work array must be used for each different
// value of n. this initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
// the same work array can be used by cfftf and cfftb.
//
// ifac a work array containing the factors of n. ifac must have
// length 15.
//
// output parameters
//
// c for j=0, ..., n-1
// c[j]=the sum from k=0, ..., n-1 of
// c[k]*exp(-i*j*k*2*pi/n)
//
// where i=sqrt(-1)
//
// This transform is unnormalized since a call of cfftf
// followed by a call of cfftb will multiply the input
// sequence by n.
//
// work contains results which must not be destroyed between
// calls of cfftf or cfftb.
// ifac contains results which must not be destroyed between
// calls of cfftf or cfftb.
func cfftf(n int, r, work []float64, ifac []int) {
if n == 1 {
return
}
cfftf1(n, r, work, work[2*n:], ifac)
}
func cfftf1(n int, c, ch, wa []float64, ifac []int) {
nf := ifac[1]
na := false
l1 := 1
iw := 0
for k1 := 1; k1 <= nf; k1++ {
ip := ifac[k1+1]
l2 := ip * l1
ido := n / l2
idot := 2 * ido
idl1 := idot * l1
switch ip {
case 4:
ix2 := iw + idot
ix3 := ix2 + idot
if na {
passf4(idot, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:])
} else {
passf4(idot, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:])
}
na = !na
case 2:
if na {
passf2(idot, l1, ch, c, wa[iw:])
} else {
passf2(idot, l1, c, ch, wa[iw:])
}
na = !na
case 3:
ix2 := iw + idot
if na {
passf3(idot, l1, ch, c, wa[iw:], wa[ix2:])
} else {
passf3(idot, l1, c, ch, wa[iw:], wa[ix2:])
}
na = !na
case 5:
ix2 := iw + idot
ix3 := ix2 + idot
ix4 := ix3 + idot
if na {
passf5(idot, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
} else {
passf5(idot, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
}
na = !na
default:
var nac bool
if na {
nac = passf(idot, ip, l1, idl1, ch, ch, ch, c, c, wa[iw:])
} else {
nac = passf(idot, ip, l1, idl1, c, c, c, ch, ch, wa[iw:])
}
if nac {
na = !na
}
}
l1 = l2
iw += (ip - 1) * idot
}
if na {
for i := 0; i < 2*n; i++ {
c[i] = ch[i]
}
}
}
func passf2(ido, l1 int, cc, ch, wa1 []float64) {
cc3 := newThreeArray(ido, 2, l1, cc)
ch3 := newThreeArray(ido, l1, 2, ch)
if ido <= 2 {
for k := 0; k < l1; k++ {
ch3.set(0, k, 0, cc3.at(0, 0, k)+cc3.at(0, 1, k))
ch3.set(0, k, 1, cc3.at(0, 0, k)-cc3.at(0, 1, k))
ch3.set(1, k, 0, cc3.at(1, 0, k)+cc3.at(1, 1, k))
ch3.set(1, k, 1, cc3.at(1, 0, k)-cc3.at(1, 1, k))
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
ch3.set(i-1, k, 0, cc3.at(i-1, 0, k)+cc3.at(i-1, 1, k))
tr2 := cc3.at(i-1, 0, k) - cc3.at(i-1, 1, k)
ch3.set(i, k, 0, cc3.at(i, 0, k)+cc3.at(i, 1, k))
ti2 := cc3.at(i, 0, k) - cc3.at(i, 1, k)
ch3.set(i, k, 1, wa1[i-1]*ti2-wa1[i]*tr2)
ch3.set(i-1, k, 1, wa1[i-1]*tr2+wa1[i]*ti2)
}
}
}
func passf3(ido, l1 int, cc, ch, wa1, wa2 []float64) {
const (
taur = -0.5
taui = -0.866025403784439 // -sqrt(3)/2
)
cc3 := newThreeArray(ido, 3, l1, cc)
ch3 := newThreeArray(ido, l1, 3, ch)
if ido == 2 {
for k := 0; k < l1; k++ {
tr2 := cc3.at(0, 1, k) + cc3.at(0, 2, k)
cr2 := cc3.at(0, 0, k) + taur*tr2
ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2)
ti2 := cc3.at(1, 1, k) + cc3.at(1, 2, k)
ci2 := cc3.at(1, 0, k) + taur*ti2
ch3.set(1, k, 0, cc3.at(1, 0, k)+ti2)
cr3 := taui * (cc3.at(0, 1, k) - cc3.at(0, 2, k))
ci3 := taui * (cc3.at(1, 1, k) - cc3.at(1, 2, k))
ch3.set(0, k, 1, cr2-ci3)
ch3.set(0, k, 2, cr2+ci3)
ch3.set(1, k, 1, ci2+cr3)
ch3.set(1, k, 2, ci2-cr3)
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
tr2 := cc3.at(i-1, 1, k) + cc3.at(i-1, 2, k)
cr2 := cc3.at(i-1, 0, k) + taur*tr2
ch3.set(i-1, k, 0, cc3.at(i-1, 0, k)+tr2)
ti2 := cc3.at(i, 1, k) + cc3.at(i, 2, k)
ci2 := cc3.at(i, 0, k) + taur*ti2
ch3.set(i, k, 0, cc3.at(i, 0, k)+ti2)
cr3 := taui * (cc3.at(i-1, 1, k) - cc3.at(i-1, 2, k))
ci3 := taui * (cc3.at(i, 1, k) - cc3.at(i, 2, k))
dr2 := cr2 - ci3
dr3 := cr2 + ci3
di2 := ci2 + cr3
di3 := ci2 - cr3
ch3.set(i, k, 1, wa1[i-1]*di2-wa1[i]*dr2)
ch3.set(i-1, k, 1, wa1[i-1]*dr2+wa1[i]*di2)
ch3.set(i, k, 2, wa2[i-1]*di3-wa2[i]*dr3)
ch3.set(i-1, k, 2, wa2[i-1]*dr3+wa2[i]*di3)
}
}
}
func passf4(ido, l1 int, cc, ch, wa1, wa2, wa3 []float64) {
cc3 := newThreeArray(ido, 4, l1, cc)
ch3 := newThreeArray(ido, l1, 4, ch)
if ido == 2 {
for k := 0; k < l1; k++ {
ti1 := cc3.at(1, 0, k) - cc3.at(1, 2, k)
ti2 := cc3.at(1, 0, k) + cc3.at(1, 2, k)
tr4 := cc3.at(1, 1, k) - cc3.at(1, 3, k)
ti3 := cc3.at(1, 1, k) + cc3.at(1, 3, k)
tr1 := cc3.at(0, 0, k) - cc3.at(0, 2, k)
tr2 := cc3.at(0, 0, k) + cc3.at(0, 2, k)
ti4 := cc3.at(0, 3, k) - cc3.at(0, 1, k)
tr3 := cc3.at(0, 1, k) + cc3.at(0, 3, k)
ch3.set(0, k, 0, tr2+tr3)
ch3.set(0, k, 2, tr2-tr3)
ch3.set(1, k, 0, ti2+ti3)
ch3.set(1, k, 2, ti2-ti3)
ch3.set(0, k, 1, tr1+tr4)
ch3.set(0, k, 3, tr1-tr4)
ch3.set(1, k, 1, ti1+ti4)
ch3.set(1, k, 3, ti1-ti4)
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
ti1 := cc3.at(i, 0, k) - cc3.at(i, 2, k)
ti2 := cc3.at(i, 0, k) + cc3.at(i, 2, k)
ti3 := cc3.at(i, 1, k) + cc3.at(i, 3, k)
tr4 := cc3.at(i, 1, k) - cc3.at(i, 3, k)
tr1 := cc3.at(i-1, 0, k) - cc3.at(i-1, 2, k)
tr2 := cc3.at(i-1, 0, k) + cc3.at(i-1, 2, k)
ti4 := cc3.at(i-1, 3, k) - cc3.at(i-1, 1, k)
tr3 := cc3.at(i-1, 1, k) + cc3.at(i-1, 3, k)
ch3.set(i-1, k, 0, tr2+tr3)
cr3 := tr2 - tr3
ch3.set(i, k, 0, ti2+ti3)
ci3 := ti2 - ti3
cr2 := tr1 + tr4
cr4 := tr1 - tr4
ci2 := ti1 + ti4
ci4 := ti1 - ti4
ch3.set(i-1, k, 1, wa1[i-1]*cr2+wa1[i]*ci2)
ch3.set(i, k, 1, wa1[i-1]*ci2-wa1[i]*cr2)
ch3.set(i-1, k, 2, wa2[i-1]*cr3+wa2[i]*ci3)
ch3.set(i, k, 2, wa2[i-1]*ci3-wa2[i]*cr3)
ch3.set(i-1, k, 3, wa3[i-1]*cr4+wa3[i]*ci4)
ch3.set(i, k, 3, wa3[i-1]*ci4-wa3[i]*cr4)
}
}
}
func passf5(ido, l1 int, cc, ch, wa1, wa2, wa3, wa4 []float64) {
const (
tr11 = 0.309016994374947
ti11 = -0.951056516295154
tr12 = -0.809016994374947
ti12 = -0.587785252292473
)
cc3 := newThreeArray(ido, 5, l1, cc)
ch3 := newThreeArray(ido, l1, 5, ch)
if ido == 2 {
for k := 0; k < l1; k++ {
ti5 := cc3.at(1, 1, k) - cc3.at(1, 4, k)
ti2 := cc3.at(1, 1, k) + cc3.at(1, 4, k)
ti4 := cc3.at(1, 2, k) - cc3.at(1, 3, k)
ti3 := cc3.at(1, 2, k) + cc3.at(1, 3, k)
tr5 := cc3.at(0, 1, k) - cc3.at(0, 4, k)
tr2 := cc3.at(0, 1, k) + cc3.at(0, 4, k)
tr4 := cc3.at(0, 2, k) - cc3.at(0, 3, k)
tr3 := cc3.at(0, 2, k) + cc3.at(0, 3, k)
ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2+tr3)
ch3.set(1, k, 0, cc3.at(1, 0, k)+ti2+ti3)
cr2 := cc3.at(0, 0, k) + tr11*tr2 + tr12*tr3
ci2 := cc3.at(1, 0, k) + tr11*ti2 + tr12*ti3
cr3 := cc3.at(0, 0, k) + tr12*tr2 + tr11*tr3
ci3 := cc3.at(1, 0, k) + tr12*ti2 + tr11*ti3
cr5 := ti11*tr5 + ti12*tr4
ci5 := ti11*ti5 + ti12*ti4
cr4 := ti12*tr5 - ti11*tr4
ci4 := ti12*ti5 - ti11*ti4
ch3.set(0, k, 1, cr2-ci5)
ch3.set(0, k, 4, cr2+ci5)
ch3.set(1, k, 1, ci2+cr5)
ch3.set(1, k, 2, ci3+cr4)
ch3.set(0, k, 2, cr3-ci4)
ch3.set(0, k, 3, cr3+ci4)
ch3.set(1, k, 3, ci3-cr4)
ch3.set(1, k, 4, ci2-cr5)
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
ti5 := cc3.at(i, 1, k) - cc3.at(i, 4, k)
ti2 := cc3.at(i, 1, k) + cc3.at(i, 4, k)
ti4 := cc3.at(i, 2, k) - cc3.at(i, 3, k)
ti3 := cc3.at(i, 2, k) + cc3.at(i, 3, k)
tr5 := cc3.at(i-1, 1, k) - cc3.at(i-1, 4, k)
tr2 := cc3.at(i-1, 1, k) + cc3.at(i-1, 4, k)
tr4 := cc3.at(i-1, 2, k) - cc3.at(i-1, 3, k)
tr3 := cc3.at(i-1, 2, k) + cc3.at(i-1, 3, k)
ch3.set(i-1, k, 0, cc3.at(i-1, 0, k)+tr2+tr3)
ch3.set(i, k, 0, cc3.at(i, 0, k)+ti2+ti3)
cr2 := cc3.at(i-1, 0, k) + tr11*tr2 + tr12*tr3
ci2 := cc3.at(i, 0, k) + tr11*ti2 + tr12*ti3
cr3 := cc3.at(i-1, 0, k) + tr12*tr2 + tr11*tr3
ci3 := cc3.at(i, 0, k) + tr12*ti2 + tr11*ti3
cr5 := ti11*tr5 + ti12*tr4
ci5 := ti11*ti5 + ti12*ti4
cr4 := ti12*tr5 - ti11*tr4
ci4 := ti12*ti5 - ti11*ti4
dr3 := cr3 - ci4
dr4 := cr3 + ci4
di3 := ci3 + cr4
di4 := ci3 - cr4
dr5 := cr2 + ci5
dr2 := cr2 - ci5
di5 := ci2 - cr5
di2 := ci2 + cr5
ch3.set(i-1, k, 1, wa1[i-1]*dr2+wa1[i]*di2)
ch3.set(i, k, 1, wa1[i-1]*di2-wa1[i]*dr2)
ch3.set(i-1, k, 2, wa2[i-1]*dr3+wa2[i]*di3)
ch3.set(i, k, 2, wa2[i-1]*di3-wa2[i]*dr3)
ch3.set(i-1, k, 3, wa3[i-1]*dr4+wa3[i]*di4)
ch3.set(i, k, 3, wa3[i-1]*di4-wa3[i]*dr4)
ch3.set(i-1, k, 4, wa4[i-1]*dr5+wa4[i]*di5)
ch3.set(i, k, 4, wa4[i-1]*di5-wa4[i]*dr5)
}
}
}
func passf(ido, ip, l1, idl1 int, cc, c1, c2, ch, ch2, wa []float64) (nac bool) {
cc3 := newThreeArray(ido, ip, l1, cc)
c13 := newThreeArray(ido, l1, ip, c1)
ch3 := newThreeArray(ido, l1, ip, ch)
c2m := newTwoArray(idl1, ip, c2)
ch2m := newTwoArray(idl1, ip, ch2)
idot := ido / 2
ipph := (ip + 1) / 2
idp := ip * ido
if ido < l1 {
for j := 1; j < ipph; j++ {
jc := ip - j
for i := 0; i < ido; i++ {
for k := 0; k < l1; k++ {
ch3.set(i, k, j, cc3.at(i, j, k)+cc3.at(i, jc, k))
ch3.set(i, k, jc, cc3.at(i, j, k)-cc3.at(i, jc, k))
}
}
}
for i := 0; i < ido; i++ {
for k := 0; k < l1; k++ {
ch3.set(i, k, 0, cc3.at(i, 0, k))
}
}
} else {
for j := 1; j < ipph; j++ {
jc := ip - j
for k := 0; k < l1; k++ {
for i := 0; i < ido; i++ {
ch3.set(i, k, j, cc3.at(i, j, k)+cc3.at(i, jc, k))
ch3.set(i, k, jc, cc3.at(i, j, k)-cc3.at(i, jc, k))
}
}
}
for k := 0; k < l1; k++ {
for i := 0; i < ido; i++ {
ch3.set(i, k, 0, cc3.at(i, 0, k))
}
}
}
idl := 1 - ido
inc := 0
for l := 1; l < ipph; l++ {
lc := ip - l
idl += ido
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, l, ch2m.at(ik, 0)+wa[idl-1]*ch2m.at(ik, 1))
c2m.set(ik, lc, -wa[idl]*ch2m.at(ik, ip-1))
}
idlj := idl
inc += ido
for j := 2; j < ipph; j++ {
jc := ip - j
idlj += inc
if idlj > idp {
idlj -= idp
}
war := wa[idlj-1]
wai := wa[idlj]
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, l, c2m.at(ik, l)+war*ch2m.at(ik, j))
c2m.set(ik, lc, c2m.at(ik, lc)-wai*ch2m.at(ik, jc))
}
}
}
for j := 1; j < ipph; j++ {
for ik := 0; ik < idl1; ik++ {
ch2m.set(ik, 0, ch2m.at(ik, 0)+ch2m.at(ik, j))
}
}
for j := 1; j < ipph; j++ {
jc := ip - j
for ik := 1; ik < idl1; ik += 2 {
ch2m.set(ik-1, j, c2m.at(ik-1, j)-c2m.at(ik, jc))
ch2m.set(ik-1, jc, c2m.at(ik-1, j)+c2m.at(ik, jc))
ch2m.set(ik, j, c2m.at(ik, j)+c2m.at(ik-1, jc))
ch2m.set(ik, jc, c2m.at(ik, j)-c2m.at(ik-1, jc))
}
}
if ido == 2 {
return true
}
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, 0, ch2m.at(ik, 0))
}
for j := 1; j < ip; j++ {
for k := 0; k < l1; k++ {
c13.set(0, k, j, ch3.at(0, k, j))
c13.set(1, k, j, ch3.at(1, k, j))
}
}
if idot > l1 {
idj := 1 - ido
for j := 1; j < ip; j++ {
idj += ido
for k := 0; k < l1; k++ {
idij := idj
for i := 3; i < ido; i += 2 {
idij += 2
c13.set(i-1, k, j, wa[idij-1]*ch3.at(i-1, k, j)+wa[idij]*ch3.at(i, k, j))
c13.set(i, k, j, wa[idij-1]*ch3.at(i, k, j)-wa[idij]*ch3.at(i-1, k, j))
}
}
}
return false
}
idij := 0
for j := 1; j < ip; j++ {
idij += 2
for i := 3; i < ido; i += 2 {
idij += 2
for k := 0; k < l1; k++ {
c13.set(i-1, k, j, wa[idij-1]*ch3.at(i-1, k, j)+wa[idij]*ch3.at(i, k, j))
c13.set(i, k, j, wa[idij-1]*ch3.at(i, k, j)-wa[idij]*ch3.at(i-1, k, j))
}
}
}
return false
}
// TODO(kortschak): As described in the documentation below, the
// only change between cfftf and cfftb is the sign before the i in
// the inner loop. The entirety of the code below cfft? could be
// shared between cfftf and cfftb by passing a sign parameter.
// cfftb computes the forward complex discrete fourier
// transform (the fourier analysis). equivalently , cfftb computes
// the fourier coefficients of a complex periodic sequence.
// the transform is defined below at output parameter c.
//
// input parameters
//
// n the length of the array c to be transformed. the method
// is most efficient when n is a product of small primes.
// n may change so long as different work arrays are provided
//
// c a complex array of length n which contains the sequence
// to be transformed
//
// work a real work array which must be dimensioned at least 4*n.
// in the program that calls cfftb. the work array must be
// initialized by calling subroutine cffti(n,work) and a
// different work array must be used for each different
// value of n. this initialization does not have to be
// repeated so long as n remains unchanged thus subsequent
// transforms can be obtained faster than the first.
// the same work array can be used by cfftb and cfftb.
//
// ifac a work array containing the factors of n. ifac must have
// length 15.
//
// output parameters
//
// c for j=0, ..., n-1
// c[j]=the sum from k=0, ..., n-1 of
// c[k]*exp(i*j*k*2*pi/n)
//
// where i=sqrt(-1)
//
// This transform is unnormalized since a call of cfftf
// followed by a call of cfftb will multiply the input
// sequence by n.
//
// work contains results which must not be destroyed between
// calls of cfftf or cfftb.
// ifac contains results which must not be destroyed between
// calls of cfftf or cfftb.
func cfftb(n int, r, work []float64, ifac []int) {
if n == 1 {
return
}
cfftb1(n, r, work, work[2*n:], ifac)
}
func cfftb1(n int, c, ch, wa []float64, ifac []int) {
nf := ifac[1]
na := false
l1 := 1
iw := 0
for k1 := 1; k1 <= nf; k1++ {
ip := ifac[k1+1]
l2 := ip * l1
ido := n / l2
idot := 2 * ido
idl1 := idot * l1
switch ip {
case 4:
ix2 := iw + idot
ix3 := ix2 + idot
if na {
passb4(idot, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:])
} else {
passb4(idot, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:])
}
na = !na
case 2:
if na {
passb2(idot, l1, ch, c, wa[iw:])
} else {
passb2(idot, l1, c, ch, wa[iw:])
}
na = !na
case 3:
ix2 := iw + idot
if na {
passb3(idot, l1, ch, c, wa[iw:], wa[ix2:])
} else {
passb3(idot, l1, c, ch, wa[iw:], wa[ix2:])
}
na = !na
case 5:
ix2 := iw + idot
ix3 := ix2 + idot
ix4 := ix3 + idot
if na {
passb5(idot, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
} else {
passb5(idot, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:])
}
na = !na
default:
var nac bool
if na {
nac = passb(idot, ip, l1, idl1, ch, ch, ch, c, c, wa[iw:])
} else {
nac = passb(idot, ip, l1, idl1, c, c, c, ch, ch, wa[iw:])
}
if nac {
na = !na
}
}
l1 = l2
iw += (ip - 1) * idot
}
if na {
for i := 0; i < 2*n; i++ {
c[i] = ch[i]
}
}
}
func passb2(ido, l1 int, cc, ch, wa1 []float64) {
cc3 := newThreeArray(ido, 2, l1, cc)
ch3 := newThreeArray(ido, l1, 2, ch)
if ido <= 2 {
for k := 0; k < l1; k++ {
ch3.set(0, k, 0, cc3.at(0, 0, k)+cc3.at(0, 1, k))
ch3.set(0, k, 1, cc3.at(0, 0, k)-cc3.at(0, 1, k))
ch3.set(1, k, 0, cc3.at(1, 0, k)+cc3.at(1, 1, k))
ch3.set(1, k, 1, cc3.at(1, 0, k)-cc3.at(1, 1, k))
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
ch3.set(i-1, k, 0, cc3.at(i-1, 0, k)+cc3.at(i-1, 1, k))
tr2 := cc3.at(i-1, 0, k) - cc3.at(i-1, 1, k)
ch3.set(i, k, 0, cc3.at(i, 0, k)+cc3.at(i, 1, k))
ti2 := cc3.at(i, 0, k) - cc3.at(i, 1, k)
ch3.set(i, k, 1, wa1[i-1]*ti2+wa1[i]*tr2)
ch3.set(i-1, k, 1, wa1[i-1]*tr2-wa1[i]*ti2)
}
}
}
func passb3(ido, l1 int, cc, ch, wa1, wa2 []float64) {
const (
taur = -0.5
taui = 0.866025403784439 // sqrt(3)/2
)
cc3 := newThreeArray(ido, 3, l1, cc)
ch3 := newThreeArray(ido, l1, 3, ch)
if ido == 2 {
for k := 0; k < l1; k++ {
tr2 := cc3.at(0, 1, k) + cc3.at(0, 2, k)
cr2 := cc3.at(0, 0, k) + taur*tr2
ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2)
ti2 := cc3.at(1, 1, k) + cc3.at(1, 2, k)
ci2 := cc3.at(1, 0, k) + taur*ti2
ch3.set(1, k, 0, cc3.at(1, 0, k)+ti2)
cr3 := taui * (cc3.at(0, 1, k) - cc3.at(0, 2, k))
ci3 := taui * (cc3.at(1, 1, k) - cc3.at(1, 2, k))
ch3.set(0, k, 1, cr2-ci3)
ch3.set(0, k, 2, cr2+ci3)
ch3.set(1, k, 1, ci2+cr3)
ch3.set(1, k, 2, ci2-cr3)
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
tr2 := cc3.at(i-1, 1, k) + cc3.at(i-1, 2, k)
cr2 := cc3.at(i-1, 0, k) + taur*tr2
ch3.set(i-1, k, 0, cc3.at(i-1, 0, k)+tr2)
ti2 := cc3.at(i, 1, k) + cc3.at(i, 2, k)
ci2 := cc3.at(i, 0, k) + taur*ti2
ch3.set(i, k, 0, cc3.at(i, 0, k)+ti2)
cr3 := taui * (cc3.at(i-1, 1, k) - cc3.at(i-1, 2, k))
ci3 := taui * (cc3.at(i, 1, k) - cc3.at(i, 2, k))
dr2 := cr2 - ci3
dr3 := cr2 + ci3
di2 := ci2 + cr3
di3 := ci2 - cr3
ch3.set(i, k, 1, wa1[i-1]*di2+wa1[i]*dr2)
ch3.set(i-1, k, 1, wa1[i-1]*dr2-wa1[i]*di2)
ch3.set(i, k, 2, wa2[i-1]*di3+wa2[i]*dr3)
ch3.set(i-1, k, 2, wa2[i-1]*dr3-wa2[i]*di3)
}
}
}
func passb4(ido, l1 int, cc, ch, wa1, wa2, wa3 []float64) {
cc3 := newThreeArray(ido, 4, l1, cc)
ch3 := newThreeArray(ido, l1, 4, ch)
if ido == 2 {
for k := 0; k < l1; k++ {
ti1 := cc3.at(1, 0, k) - cc3.at(1, 2, k)
ti2 := cc3.at(1, 0, k) + cc3.at(1, 2, k)
tr4 := cc3.at(1, 3, k) - cc3.at(1, 1, k)
ti3 := cc3.at(1, 1, k) + cc3.at(1, 3, k)
tr1 := cc3.at(0, 0, k) - cc3.at(0, 2, k)
tr2 := cc3.at(0, 0, k) + cc3.at(0, 2, k)
ti4 := cc3.at(0, 1, k) - cc3.at(0, 3, k)
tr3 := cc3.at(0, 1, k) + cc3.at(0, 3, k)
ch3.set(0, k, 0, tr2+tr3)
ch3.set(0, k, 2, tr2-tr3)
ch3.set(1, k, 0, ti2+ti3)
ch3.set(1, k, 2, ti2-ti3)
ch3.set(0, k, 1, tr1+tr4)
ch3.set(0, k, 3, tr1-tr4)
ch3.set(1, k, 1, ti1+ti4)
ch3.set(1, k, 3, ti1-ti4)
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
ti1 := cc3.at(i, 0, k) - cc3.at(i, 2, k)
ti2 := cc3.at(i, 0, k) + cc3.at(i, 2, k)
ti3 := cc3.at(i, 1, k) + cc3.at(i, 3, k)
tr4 := cc3.at(i, 3, k) - cc3.at(i, 1, k)
tr1 := cc3.at(i-1, 0, k) - cc3.at(i-1, 2, k)
tr2 := cc3.at(i-1, 0, k) + cc3.at(i-1, 2, k)
ti4 := cc3.at(i-1, 1, k) - cc3.at(i-1, 3, k)
tr3 := cc3.at(i-1, 1, k) + cc3.at(i-1, 3, k)
ch3.set(i-1, k, 0, tr2+tr3)
cr3 := tr2 - tr3
ch3.set(i, k, 0, ti2+ti3)
ci3 := ti2 - ti3
cr2 := tr1 + tr4
cr4 := tr1 - tr4
ci2 := ti1 + ti4
ci4 := ti1 - ti4
ch3.set(i-1, k, 1, wa1[i-1]*cr2-wa1[i]*ci2)
ch3.set(i, k, 1, wa1[i-1]*ci2+wa1[i]*cr2)
ch3.set(i-1, k, 2, wa2[i-1]*cr3-wa2[i]*ci3)
ch3.set(i, k, 2, wa2[i-1]*ci3+wa2[i]*cr3)
ch3.set(i-1, k, 3, wa3[i-1]*cr4-wa3[i]*ci4)
ch3.set(i, k, 3, wa3[i-1]*ci4+wa3[i]*cr4)
}
}
}
func passb5(ido, l1 int, cc, ch, wa1, wa2, wa3, wa4 []float64) {
const (
tr11 = 0.309016994374947
ti11 = 0.951056516295154
tr12 = -0.809016994374947
ti12 = 0.587785252292473
)
cc3 := newThreeArray(ido, 5, l1, cc)
ch3 := newThreeArray(ido, l1, 5, ch)
if ido == 2 {
for k := 0; k < l1; k++ {
ti5 := cc3.at(1, 1, k) - cc3.at(1, 4, k)
ti2 := cc3.at(1, 1, k) + cc3.at(1, 4, k)
ti4 := cc3.at(1, 2, k) - cc3.at(1, 3, k)
ti3 := cc3.at(1, 2, k) + cc3.at(1, 3, k)
tr5 := cc3.at(0, 1, k) - cc3.at(0, 4, k)
tr2 := cc3.at(0, 1, k) + cc3.at(0, 4, k)
tr4 := cc3.at(0, 2, k) - cc3.at(0, 3, k)
tr3 := cc3.at(0, 2, k) + cc3.at(0, 3, k)
ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2+tr3)
ch3.set(1, k, 0, cc3.at(1, 0, k)+ti2+ti3)
cr2 := cc3.at(0, 0, k) + tr11*tr2 + tr12*tr3
ci2 := cc3.at(1, 0, k) + tr11*ti2 + tr12*ti3
cr3 := cc3.at(0, 0, k) + tr12*tr2 + tr11*tr3
ci3 := cc3.at(1, 0, k) + tr12*ti2 + tr11*ti3
cr5 := ti11*tr5 + ti12*tr4
ci5 := ti11*ti5 + ti12*ti4
cr4 := ti12*tr5 - ti11*tr4
ci4 := ti12*ti5 - ti11*ti4
ch3.set(0, k, 1, cr2-ci5)
ch3.set(0, k, 4, cr2+ci5)
ch3.set(1, k, 1, ci2+cr5)
ch3.set(1, k, 2, ci3+cr4)
ch3.set(0, k, 2, cr3-ci4)
ch3.set(0, k, 3, cr3+ci4)
ch3.set(1, k, 3, ci3-cr4)
ch3.set(1, k, 4, ci2-cr5)
}
return
}
for k := 0; k < l1; k++ {
for i := 1; i < ido; i += 2 {
ti5 := cc3.at(i, 1, k) - cc3.at(i, 4, k)
ti2 := cc3.at(i, 1, k) + cc3.at(i, 4, k)
ti4 := cc3.at(i, 2, k) - cc3.at(i, 3, k)
ti3 := cc3.at(i, 2, k) + cc3.at(i, 3, k)
tr5 := cc3.at(i-1, 1, k) - cc3.at(i-1, 4, k)
tr2 := cc3.at(i-1, 1, k) + cc3.at(i-1, 4, k)
tr4 := cc3.at(i-1, 2, k) - cc3.at(i-1, 3, k)
tr3 := cc3.at(i-1, 2, k) + cc3.at(i-1, 3, k)
ch3.set(i-1, k, 0, cc3.at(i-1, 0, k)+tr2+tr3)
ch3.set(i, k, 0, cc3.at(i, 0, k)+ti2+ti3)
cr2 := cc3.at(i-1, 0, k) + tr11*tr2 + tr12*tr3
ci2 := cc3.at(i, 0, k) + tr11*ti2 + tr12*ti3
cr3 := cc3.at(i-1, 0, k) + tr12*tr2 + tr11*tr3
ci3 := cc3.at(i, 0, k) + tr12*ti2 + tr11*ti3
cr5 := ti11*tr5 + ti12*tr4
ci5 := ti11*ti5 + ti12*ti4
cr4 := ti12*tr5 - ti11*tr4
ci4 := ti12*ti5 - ti11*ti4
dr3 := cr3 - ci4
dr4 := cr3 + ci4
di3 := ci3 + cr4
di4 := ci3 - cr4
dr5 := cr2 + ci5
dr2 := cr2 - ci5
di5 := ci2 - cr5
di2 := ci2 + cr5
ch3.set(i-1, k, 1, wa1[i-1]*dr2-wa1[i]*di2)
ch3.set(i, k, 1, wa1[i-1]*di2+wa1[i]*dr2)
ch3.set(i-1, k, 2, wa2[i-1]*dr3-wa2[i]*di3)
ch3.set(i, k, 2, wa2[i-1]*di3+wa2[i]*dr3)
ch3.set(i-1, k, 3, wa3[i-1]*dr4-wa3[i]*di4)
ch3.set(i, k, 3, wa3[i-1]*di4+wa3[i]*dr4)
ch3.set(i-1, k, 4, wa4[i-1]*dr5-wa4[i]*di5)
ch3.set(i, k, 4, wa4[i-1]*di5+wa4[i]*dr5)
}
}
}
func passb(ido, ip, l1, idl1 int, cc, c1, c2, ch, ch2, wa []float64) (nac bool) {
cc3 := newThreeArray(ido, ip, l1, cc)
c13 := newThreeArray(ido, l1, ip, c1)
ch3 := newThreeArray(ido, l1, ip, ch)
c2m := newTwoArray(idl1, ip, c2)
ch2m := newTwoArray(idl1, ip, ch2)
idot := ido / 2
ipph := (ip + 1) / 2
idp := ip * ido
if ido < l1 {
for j := 1; j < ipph; j++ {
jc := ip - j
for i := 0; i < ido; i++ {
for k := 0; k < l1; k++ {
ch3.set(i, k, j, cc3.at(i, j, k)+cc3.at(i, jc, k))
ch3.set(i, k, jc, cc3.at(i, j, k)-cc3.at(i, jc, k))
}
}
}
for i := 0; i < ido; i++ {
for k := 0; k < l1; k++ {
ch3.set(i, k, 0, cc3.at(i, 0, k))
}
}
} else {
for j := 1; j < ipph; j++ {
jc := ip - j
for k := 0; k < l1; k++ {
for i := 0; i < ido; i++ {
ch3.set(i, k, j, cc3.at(i, j, k)+cc3.at(i, jc, k))
ch3.set(i, k, jc, cc3.at(i, j, k)-cc3.at(i, jc, k))
}
}
}
for k := 0; k < l1; k++ {
for i := 0; i < ido; i++ {
ch3.set(i, k, 0, cc3.at(i, 0, k))
}
}
}
idl := 1 - ido
inc := 0
for l := 1; l < ipph; l++ {
lc := ip - l
idl += ido
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, l, ch2m.at(ik, 0)+wa[idl-1]*ch2m.at(ik, 1))
c2m.set(ik, lc, wa[idl]*ch2m.at(ik, ip-1))
}
idlj := idl
inc += ido
for j := 2; j < ipph; j++ {
jc := ip - j
idlj += inc
if idlj > idp {
idlj -= idp
}
war := wa[idlj-1]
wai := wa[idlj]
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, l, c2m.at(ik, l)+war*ch2m.at(ik, j))
c2m.set(ik, lc, c2m.at(ik, lc)+wai*ch2m.at(ik, jc))
}
}
}
for j := 1; j < ipph; j++ {
for ik := 0; ik < idl1; ik++ {
ch2m.set(ik, 0, ch2m.at(ik, 0)+ch2m.at(ik, j))
}
}
for j := 1; j < ipph; j++ {
jc := ip - j
for ik := 1; ik < idl1; ik += 2 {
ch2m.set(ik-1, j, c2m.at(ik-1, j)-c2m.at(ik, jc))
ch2m.set(ik-1, jc, c2m.at(ik-1, j)+c2m.at(ik, jc))
ch2m.set(ik, j, c2m.at(ik, j)+c2m.at(ik-1, jc))
ch2m.set(ik, jc, c2m.at(ik, j)-c2m.at(ik-1, jc))
}
}
if ido == 2 {
return true
}
for ik := 0; ik < idl1; ik++ {
c2m.set(ik, 0, ch2m.at(ik, 0))
}
for j := 1; j < ip; j++ {
for k := 0; k < l1; k++ {
c13.set(0, k, j, ch3.at(0, k, j))
c13.set(1, k, j, ch3.at(1, k, j))
}
}
if idot > l1 {
idj := 1 - ido
for j := 1; j < ip; j++ {
idj += ido
for k := 0; k < l1; k++ {
idij := idj
for i := 3; i < ido; i += 2 {
idij += 2
c13.set(i-1, k, j, wa[idij-1]*ch3.at(i-1, k, j)-wa[idij]*ch3.at(i, k, j))
c13.set(i, k, j, wa[idij-1]*ch3.at(i, k, j)+wa[idij]*ch3.at(i-1, k, j))
}
}
}
return false
}
idij := -1
for j := 1; j < ip; j++ {
idij += 2
for i := 3; i < ido; i += 2 {
idij += 2
for k := 0; k < l1; k++ {
c13.set(i-1, k, j, wa[idij-1]*ch3.at(i-1, k, j)-wa[idij]*ch3.at(i, k, j))
c13.set(i, k, j, wa[idij-1]*ch3.at(i, k, j)+wa[idij]*ch3.at(i-1, k, j))
}
}
}
return false
}