mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 18:42:45 +08:00 
			
		
		
		
	 d0fc09f7d6
			
		
	
	d0fc09f7d6
	
	
	
		
			
			Removed duplicated interface Improve MH comment Made MH examples Documentation fixes Fix documentation and permute LHC
		
			
				
	
	
		
			99 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2015 The gonum Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| package sample
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| 	"sort"
 | |
| 	"testing"
 | |
| 
 | |
| 	"github.com/gonum/stat"
 | |
| 	"github.com/gonum/stat/dist"
 | |
| )
 | |
| 
 | |
| type lhDist interface {
 | |
| 	Quantile(float64) float64
 | |
| 	CDF(float64) float64
 | |
| }
 | |
| 
 | |
| func TestLatinHypercube(t *testing.T) {
 | |
| 	for _, nSamples := range []int{1, 2, 5, 10, 20} {
 | |
| 		samples := make([]float64, nSamples)
 | |
| 		for _, dist := range []lhDist{
 | |
| 			dist.Uniform{Min: 0, Max: 1},
 | |
| 			dist.Uniform{Min: 0, Max: 10},
 | |
| 			dist.Normal{Mu: 5, Sigma: 3},
 | |
| 		} {
 | |
| 			LatinHypercube(samples, dist, nil)
 | |
| 			sort.Float64s(samples)
 | |
| 			for i, v := range samples {
 | |
| 				p := dist.CDF(v)
 | |
| 				if p < float64(i)/float64(nSamples) || p > float64(i+1)/float64(nSamples) {
 | |
| 					t.Errorf("probability out of bounds")
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestImportance(t *testing.T) {
 | |
| 	// Test by finding the expected value of a Normal
 | |
| 	trueMean := 3.0
 | |
| 	target := dist.Normal{Mu: trueMean, Sigma: 2}
 | |
| 	proposal := dist.Normal{Mu: 0, Sigma: 5}
 | |
| 	nSamples := 100000
 | |
| 	x := make([]float64, nSamples)
 | |
| 	weights := make([]float64, nSamples)
 | |
| 	Importance(x, weights, target, proposal)
 | |
| 	ev := stat.Mean(x, weights)
 | |
| 	if math.Abs(ev-trueMean) > 1e-2 {
 | |
| 		t.Errorf("Mean mismatch: Want %v, got %v", trueMean, ev)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func TestRejection(t *testing.T) {
 | |
| 	// Test by finding the expected value of a Normal
 | |
| 	trueMean := 3.0
 | |
| 	target := dist.Normal{Mu: trueMean, Sigma: 2}
 | |
| 	proposal := dist.Normal{Mu: 0, Sigma: 5}
 | |
| 
 | |
| 	nSamples := 100000
 | |
| 	x := make([]float64, nSamples)
 | |
| 	Rejection(x, target, proposal, 100, nil)
 | |
| 	ev := stat.Mean(x, nil)
 | |
| 	if math.Abs(ev-trueMean) > 1e-2 {
 | |
| 		t.Errorf("Mean mismatch: Want %v, got %v", trueMean, ev)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type condNorm struct {
 | |
| 	Sigma float64
 | |
| }
 | |
| 
 | |
| func (c condNorm) ConditionalRand(y float64) float64 {
 | |
| 	return dist.Normal{Mu: y, Sigma: c.Sigma}.Rand()
 | |
| }
 | |
| 
 | |
| func (c condNorm) ConditionalLogProb(x, y float64) float64 {
 | |
| 	return dist.Normal{Mu: y, Sigma: c.Sigma}.LogProb(x)
 | |
| }
 | |
| 
 | |
| func TestMetropolisHastings(t *testing.T) {
 | |
| 	// Test by finding the expected value of a Normal
 | |
| 	trueMean := 3.0
 | |
| 	target := dist.Normal{Mu: trueMean, Sigma: 2}
 | |
| 	proposal := condNorm{Sigma: 5}
 | |
| 
 | |
| 	burnin := 500
 | |
| 	nSamples := 100000 + burnin
 | |
| 	x := make([]float64, nSamples)
 | |
| 	MetropolisHastings(x, 100, target, proposal, nil)
 | |
| 	// Remove burnin
 | |
| 	x = x[burnin:]
 | |
| 	ev := stat.Mean(x, nil)
 | |
| 	if math.Abs(ev-trueMean) > 1e-2 {
 | |
| 		t.Errorf("Mean mismatch: Want %v, got %v", trueMean, ev)
 | |
| 	}
 | |
| }
 |