Files
gonum/lapack/testlapack/dpttrs.go
Dan Kortschak cf3307fa63 all: partially migrate to math/rand/v2
This is not intended to be a completed transition since it leaves the
libraries unusable to external client code, but rather as a step towards
use of math/rand/v2. This initial step allows repair of sequence change
failures without having to worry about API difference.
2025-02-01 22:18:04 +10:30

111 lines
2.8 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2023 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"fmt"
"testing"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/internal/rand"
"gonum.org/v1/gonum/lapack"
)
type Dpttrser interface {
Dpttrs(n, nrhs int, d, e []float64, b []float64, ldb int)
Dpttrfer
}
func DpttrsTest(t *testing.T, impl Dpttrser) {
rnd := rand.New(rand.NewSource(1))
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 20, 50, 51, 52, 53, 54, 100} {
for _, nrhs := range []int{0, 1, 2, 3, 4, 5, 10, 20, 50} {
for _, ldb := range []int{max(1, nrhs), nrhs + 3} {
dpttrsTest(t, impl, rnd, n, nrhs, ldb)
}
}
}
}
func dpttrsTest(t *testing.T, impl Dpttrser, rnd *rand.Rand, n, nrhs, ldb int) {
const tol = 1e-15
name := fmt.Sprintf("n=%v", n)
// Generate a random diagonally dominant symmetric tridiagonal matrix A.
d, e := newRandomSymTridiag(n, rnd)
// Make a copy of d and e to hold the factorization.
dFac := make([]float64, len(d))
copy(dFac, d)
eFac := make([]float64, len(e))
copy(eFac, e)
// Compute the Cholesky factorization of A.
ok := impl.Dpttrf(n, dFac, eFac)
if !ok {
t.Errorf("%v: bad test matrix, Dpttrf failed", name)
return
}
// Generate a random solution matrix X.
xWant := randomGeneral(n, nrhs, ldb, rnd)
// Compute the right-hand side.
b := zeros(n, nrhs, ldb)
dstmm(n, nrhs, d, e, xWant.Data, xWant.Stride, b.Data, b.Stride)
// Solve A*X=B.
impl.Dpttrs(n, nrhs, dFac, eFac, b.Data, b.Stride)
resid := dpttrsResidual(b, xWant)
if resid > tol {
t.Errorf("%v: unexpected solution: |diff| = %v, want <= %v", name, resid, tol)
}
}
// dstmm computes the matrix-matrix product
//
// C = A*B
//
// where A is an m×m symmetric tridiagonal matrix represented by the diagonal d
// and subdiagonal e, and B and C are m×n matrices.
func dstmm(m, n int, d, e []float64, b []float64, ldb int, c []float64, ldc int) {
if m == 0 || n == 0 {
return
}
if m == 1 {
d0 := d[0]
for j, b0j := range b[:n] {
c[j] = d0 * b0j
}
return
}
for j := 0; j < n; j++ {
c[j] = d[0]*b[j] + e[0]*b[ldb+j]
}
for i := 1; i < m-1; i++ {
for j := 0; j < n; j++ {
c[i*ldc+j] = e[i-1]*b[(i-1)*ldb+j] + d[i]*b[i*ldb+j] + e[i]*b[(i+1)*ldb+j]
}
}
for j := 0; j < n; j++ {
c[(m-1)*ldc+j] = e[m-2]*b[(m-2)*ldb+j] + d[m-1]*b[(m-1)*ldb+j]
}
}
// dpttrsResidual returns |XGOT - XWANT|_1 / n.
func dpttrsResidual(xGot, xWant blas64.General) float64 {
n, nrhs := xGot.Rows, xGot.Cols
d := zeros(n, nrhs, nrhs)
for i := 0; i < n; i++ {
for j := 0; j < nrhs; j++ {
d.Data[i*d.Stride+j] = xGot.Data[i*xGot.Stride+j] - xWant.Data[i*xWant.Stride+j]
}
}
return dlange(lapack.MaxColumnSum, n, nrhs, d.Data, d.Stride) / float64(n)
}