Files
gonum/internal/asm/f64/ge_noasm.go
Dan Kortschak ccc0da248a all: run make builds pass with go master
Run gofmt go1.17 adds the new //go:build comments
2021-04-19 15:00:56 +09:30

120 lines
2.9 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build !amd64 || noasm || gccgo || safe
// +build !amd64 noasm gccgo safe
package f64
// Ger performs the rank-one operation
// A += alpha * x * yᵀ
// where A is an m×n dense matrix, x and y are vectors, and alpha is a scalar.
func Ger(m, n uintptr, alpha float64, x []float64, incX uintptr, y []float64, incY uintptr, a []float64, lda uintptr) {
if incX == 1 && incY == 1 {
x = x[:m]
y = y[:n]
for i, xv := range x {
AxpyUnitary(alpha*xv, y, a[uintptr(i)*lda:uintptr(i)*lda+n])
}
return
}
var ky, kx uintptr
if int(incY) < 0 {
ky = uintptr(-int(n-1) * int(incY))
}
if int(incX) < 0 {
kx = uintptr(-int(m-1) * int(incX))
}
ix := kx
for i := 0; i < int(m); i++ {
AxpyInc(alpha*x[ix], y, a[uintptr(i)*lda:uintptr(i)*lda+n], n, incY, 1, ky, 0)
ix += incX
}
}
// GemvN computes
// y = alpha * A * x + beta * y
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func GemvN(m, n uintptr, alpha float64, a []float64, lda uintptr, x []float64, incX uintptr, beta float64, y []float64, incY uintptr) {
var kx, ky, i uintptr
if int(incX) < 0 {
kx = uintptr(-int(n-1) * int(incX))
}
if int(incY) < 0 {
ky = uintptr(-int(m-1) * int(incY))
}
if incX == 1 && incY == 1 {
if beta == 0 {
for i = 0; i < m; i++ {
y[i] = alpha * DotUnitary(a[lda*i:lda*i+n], x)
}
return
}
for i = 0; i < m; i++ {
y[i] = y[i]*beta + alpha*DotUnitary(a[lda*i:lda*i+n], x)
}
return
}
iy := ky
if beta == 0 {
for i = 0; i < m; i++ {
y[iy] = alpha * DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0)
iy += incY
}
return
}
for i = 0; i < m; i++ {
y[iy] = y[iy]*beta + alpha*DotInc(x, a[lda*i:lda*i+n], n, incX, 1, kx, 0)
iy += incY
}
}
// GemvT computes
// y = alpha * Aᵀ * x + beta * y
// where A is an m×n dense matrix, x and y are vectors, and alpha and beta are scalars.
func GemvT(m, n uintptr, alpha float64, a []float64, lda uintptr, x []float64, incX uintptr, beta float64, y []float64, incY uintptr) {
var kx, ky, i uintptr
if int(incX) < 0 {
kx = uintptr(-int(m-1) * int(incX))
}
if int(incY) < 0 {
ky = uintptr(-int(n-1) * int(incY))
}
switch {
case beta == 0: // beta == 0 is special-cased to memclear
if incY == 1 {
for i := range y {
y[i] = 0
}
} else {
iy := ky
for i := 0; i < int(n); i++ {
y[iy] = 0
iy += incY
}
}
case int(incY) < 0:
ScalInc(beta, y, n, uintptr(int(-incY)))
case incY == 1:
ScalUnitary(beta, y[:n])
default:
ScalInc(beta, y, n, incY)
}
if incX == 1 && incY == 1 {
for i = 0; i < m; i++ {
AxpyUnitaryTo(y, alpha*x[i], a[lda*i:lda*i+n], y)
}
return
}
ix := kx
for i = 0; i < m; i++ {
AxpyInc(alpha*x[ix], a[lda*i:lda*i+n], y, n, 1, incY, 0, ky)
ix += incX
}
}