Files
gonum/covariancematrix_test.go
2014-11-17 23:57:36 -05:00

151 lines
3.4 KiB
Go

// Copyright ©2014 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package stat
import (
"math/rand"
"testing"
"github.com/gonum/blas/goblas"
"github.com/gonum/floats"
"github.com/gonum/matrix/mat64"
)
func init() {
mat64.Register(goblas.Blas{})
}
func TestCovarianceMatrix(t *testing.T) {
for i, test := range []struct {
mat mat64.Matrix
r, c int
x []float64
}{
{
mat: mat64.NewDense(5, 2, []float64{
-2, -4,
-1, 2,
0, 0,
1, -2,
2, 4,
}),
r: 2,
c: 2,
x: []float64{
2.5, 3,
3, 10,
},
},
} {
c := CovarianceMatrix(test.mat).RawMatrix()
if c.Rows != test.r {
t.Errorf("BLAS %d: expected rows %d, found %d", i, test.r, c.Rows)
}
if c.Cols != test.c {
t.Errorf("BLAS %d: expected cols %d, found %d", i, test.c, c.Cols)
}
if !floats.Equal(test.x, c.Data) {
t.Errorf("BLAS %d: expected data %#q, found %#q", i, test.x, c.Data)
}
}
}
// benchmarks
func randMat(r, c int) mat64.Matrix {
x := make([]float64, r*c)
for i := range x {
x[i] = rand.Float64()
}
return mat64.NewDense(r, c, x)
}
func benchmarkCovarianceMatrix(b *testing.B, m mat64.Matrix) {
b.ResetTimer()
for i := 0; i < b.N; i++ {
CovarianceMatrix(m)
}
}
func BenchmarkCovarianceMatrixSmallxSmall(b *testing.B) {
// 10 * 10 elements
x := randMat(SMALL, SMALL)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixSmallxMedium(b *testing.B) {
// 10 * 1000 elements
x := randMat(SMALL, MEDIUM)
benchmarkCovarianceMatrix(b, x)
}
/*func BenchmarkCovarianceMatrixSmallxLarge(b *testing.B) {
x := randMat(SMALL, LARGE)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixSmallxHuge(b *testing.B) {
x := randMat(SMALL, HUGE)
benchmarkCovarianceMatrix(b, x)
}*/
func BenchmarkCovarianceMatrixMediumxSmall(b *testing.B) {
// 1000 * 10 elements
x := randMat(MEDIUM, SMALL)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixMediumxMedium(b *testing.B) {
// 1000 * 1000 elements
x := randMat(MEDIUM, MEDIUM)
benchmarkCovarianceMatrix(b, x)
}
/*func BenchmarkCovarianceMatrixMediumxLarge(b *testing.B) {
x := randMat(MEDIUM, LARGE)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixMediumxHuge(b *testing.B) {
x := randMat(MEDIUM, HUGE)
benchmarkCovarianceMatrix(b, x)
}*/
func BenchmarkCovarianceMatrixLargexSmall(b *testing.B) {
// 1e5 * 10 elements
x := randMat(LARGE, SMALL)
benchmarkCovarianceMatrix(b, x)
}
/*func BenchmarkCovarianceMatrixLargexMedium(b *testing.B) {
// 1e5 * 1000 elements
x := randMat(LARGE, MEDIUM)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixLargexLarge(b *testing.B) {
x := randMat(LARGE, LARGE)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixLargexHuge(b *testing.B) {
x := randMat(LARGE, HUGE)
benchmarkCovarianceMatrix(b, x)
}*/
func BenchmarkCovarianceMatrixHugexSmall(b *testing.B) {
// 1e7 * 10 elements
x := randMat(HUGE, SMALL)
benchmarkCovarianceMatrix(b, x)
}
/*func BenchmarkCovarianceMatrixHugexMedium(b *testing.B) {
// 1e7 * 1000 elements
x := randMat(HUGE, MEDIUM)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixHugexLarge(b *testing.B) {
x := randMat(HUGE, LARGE)
benchmarkCovarianceMatrix(b, x)
}
func BenchmarkCovarianceMatrixHugexHuge(b *testing.B) {
x := randMat(HUGE, HUGE)
benchmarkCovarianceMatrix(b, x)
}*/