mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 11:32:32 +08:00
587 lines
20 KiB
Go
587 lines
20 KiB
Go
// Copyright ©2016 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package optimize
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"time"
|
|
|
|
"gonum.org/v1/gonum/floats"
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
const (
|
|
nonpositiveDimension string = "optimize: non-positive input dimension"
|
|
negativeTasks string = "optimize: negative input number of tasks"
|
|
)
|
|
|
|
func min(a, b int) int {
|
|
if a < b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Task is a type to communicate between the Method and the outer
|
|
// calling script.
|
|
type Task struct {
|
|
ID int
|
|
Op Operation
|
|
*Location
|
|
}
|
|
|
|
// Location represents a location in the optimization procedure.
|
|
type Location struct {
|
|
X []float64
|
|
F float64
|
|
Gradient []float64
|
|
Hessian *mat.SymDense
|
|
}
|
|
|
|
// Method is a type which can search for an optimum of an objective function.
|
|
type Method interface {
|
|
// Init initializes the method for optimization. The inputs are
|
|
// the problem dimension and number of available concurrent tasks.
|
|
//
|
|
// Init returns the number of concurrent processes to use, which must be
|
|
// less than or equal to tasks.
|
|
Init(dim, tasks int) (concurrent int)
|
|
// Run runs an optimization. The method sends Tasks on
|
|
// the operation channel (for performing function evaluations, major
|
|
// iterations, etc.). The result of the tasks will be returned on Result.
|
|
// See the documentation for Operation types for the possible operations.
|
|
//
|
|
// The caller of Run will signal the termination of the optimization
|
|
// (i.e. convergence from user settings) by sending a task with a PostIteration
|
|
// Op field on result. More tasks may still be sent on operation after this
|
|
// occurs, but only MajorIteration operations will still be conducted
|
|
// appropriately. Thus, it can not be guaranteed that all Evaluations sent
|
|
// on operation will be evaluated, however if an Evaluation is started,
|
|
// the results of that evaluation will be sent on results.
|
|
//
|
|
// The Method must read from the result channel until it is closed.
|
|
// During this, the Method may want to send new MajorIteration(s) on
|
|
// operation. Method then must close operation, and return from Run.
|
|
// These steps must establish a "happens-before" relationship between result
|
|
// being closed (externally) and Run closing operation, for example
|
|
// by using a range loop to read from result even if no results are expected.
|
|
//
|
|
// The last parameter to Run is a slice of tasks with length equal to
|
|
// the return from Init. Task has an ID field which may be
|
|
// set and modified by Method, and must not be modified by the caller.
|
|
// The first element of tasks contains information about the initial location.
|
|
// The Location.X field is always valid. The Operation field specifies which
|
|
// other values of Location are known. If Operation == NoOperation, none of
|
|
// the values should be used, otherwise the Evaluation operations will be
|
|
// composed to specify the valid fields. Methods are free to use or
|
|
// ignore these values.
|
|
//
|
|
// Successful execution of an Operation may require the Method to modify
|
|
// fields a Location. MajorIteration calls will not modify the values in
|
|
// the Location, but Evaluation operations will. Methods are encouraged to
|
|
// leave Location fields untouched to allow memory re-use. If data needs to
|
|
// be stored, the respective field should be set to nil -- Methods should
|
|
// not allocate Location memory themselves.
|
|
//
|
|
// Method may have its own specific convergence criteria, which can
|
|
// be communicated using a MethodDone operation. This will trigger a
|
|
// PostIteration to be sent on result, and the MethodDone task will not be
|
|
// returned on result. The Method must implement Statuser, and the
|
|
// call to Status must return a Status other than NotTerminated.
|
|
//
|
|
// The operation and result tasks are guaranteed to have a buffer length
|
|
// equal to the return from Init.
|
|
Run(operation chan<- Task, result <-chan Task, tasks []Task)
|
|
// Uses checks if the Method is suited to the optimization problem. The
|
|
// input is the available functions in Problem to call, and the returns are
|
|
// the functions which may be used and an error if there is a mismatch
|
|
// between the Problem and the Method's capabilities.
|
|
Uses(has Available) (uses Available, err error)
|
|
}
|
|
|
|
// Minimize uses an optimizer to search for a minimum of a function. A
|
|
// maximization problem can be transformed into a minimization problem by
|
|
// multiplying the function by -1.
|
|
//
|
|
// The first argument represents the problem to be minimized. Its fields are
|
|
// routines that evaluate the objective function, gradient, and other
|
|
// quantities related to the problem. The objective function, p.Func, must not
|
|
// be nil. The optimization method used may require other fields to be non-nil
|
|
// as specified by method.Needs. Minimize will panic if these are not met. The
|
|
// method can be determined automatically from the supplied problem which is
|
|
// described below.
|
|
//
|
|
// If p.Status is not nil, it is called before every evaluation. If the
|
|
// returned Status is other than NotTerminated or if the error is not nil, the
|
|
// optimization run is terminated.
|
|
//
|
|
// The second argument specifies the initial location for the optimization.
|
|
// Some Methods do not require an initial location, but initX must still be
|
|
// specified for the dimension of the optimization problem.
|
|
//
|
|
// The third argument contains the settings for the minimization. If settings
|
|
// is nil, the zero value will be used, see the documentation of the Settings
|
|
// type for more information, and see the warning below. All settings will be
|
|
// honored for all Methods, even if that setting is counter-productive to the
|
|
// method. Minimize cannot guarantee strict adherence to the evaluation bounds
|
|
// specified when performing concurrent evaluations and updates.
|
|
//
|
|
// The final argument is the optimization method to use. If method == nil, then
|
|
// an appropriate default is chosen based on the properties of the other arguments
|
|
// (dimension, gradient-free or gradient-based, etc.). If method is not nil,
|
|
// Minimize panics if the Problem is not consistent with the Method (Uses
|
|
// returns an error).
|
|
//
|
|
// Minimize returns a Result struct and any error that occurred. See the
|
|
// documentation of Result for more information.
|
|
//
|
|
// See the documentation for Method for the details on implementing a method.
|
|
//
|
|
// Be aware that the default settings of Minimize are to accurately find the
|
|
// minimum. For certain functions and optimization methods, this can take many
|
|
// function evaluations. The Settings input struct can be used to limit this,
|
|
// for example by modifying the maximum function evaluations or gradient tolerance.
|
|
func Minimize(p Problem, initX []float64, settings *Settings, method Method) (*Result, error) {
|
|
startTime := time.Now()
|
|
if method == nil {
|
|
method = getDefaultMethod(&p)
|
|
}
|
|
if settings == nil {
|
|
settings = &Settings{}
|
|
}
|
|
stats := &Stats{}
|
|
dim := len(initX)
|
|
err := checkOptimization(p, dim, settings.Recorder)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
optLoc := newLocation(dim) // This must have an allocated X field.
|
|
optLoc.F = math.Inf(1)
|
|
|
|
initOp, initLoc := getInitLocation(dim, initX, settings.InitValues)
|
|
|
|
converger := settings.Converger
|
|
if converger == nil {
|
|
converger = defaultFunctionConverge()
|
|
}
|
|
converger.Init(dim)
|
|
|
|
stats.Runtime = time.Since(startTime)
|
|
|
|
// Send initial location to Recorder
|
|
if settings.Recorder != nil {
|
|
err = settings.Recorder.Record(optLoc, InitIteration, stats)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// Run optimization
|
|
var status Status
|
|
status, err = minimize(&p, method, settings, converger, stats, initOp, initLoc, optLoc, startTime)
|
|
|
|
// Cleanup and collect results
|
|
if settings.Recorder != nil && err == nil {
|
|
err = settings.Recorder.Record(optLoc, PostIteration, stats)
|
|
}
|
|
stats.Runtime = time.Since(startTime)
|
|
return &Result{
|
|
Location: *optLoc,
|
|
Stats: *stats,
|
|
Status: status,
|
|
}, err
|
|
}
|
|
|
|
func getDefaultMethod(p *Problem) Method {
|
|
if p.Grad != nil {
|
|
return &LBFGS{}
|
|
}
|
|
return &NelderMead{}
|
|
}
|
|
|
|
// minimize performs an optimization. minimize updates the settings and optLoc,
|
|
// and returns the final Status and error.
|
|
func minimize(prob *Problem, method Method, settings *Settings, converger Converger, stats *Stats, initOp Operation, initLoc, optLoc *Location, startTime time.Time) (Status, error) {
|
|
dim := len(optLoc.X)
|
|
nTasks := settings.Concurrent
|
|
if nTasks == 0 {
|
|
nTasks = 1
|
|
}
|
|
has := availFromProblem(*prob)
|
|
_, initErr := method.Uses(has)
|
|
if initErr != nil {
|
|
panic(fmt.Sprintf("optimize: specified method inconsistent with Problem: %v", initErr))
|
|
}
|
|
newNTasks := method.Init(dim, nTasks)
|
|
if newNTasks > nTasks {
|
|
panic("optimize: too many tasks returned by Method")
|
|
}
|
|
nTasks = newNTasks
|
|
|
|
// Launch the method. The method communicates tasks using the operations
|
|
// channel, and results is used to return the evaluated results.
|
|
operations := make(chan Task, nTasks)
|
|
results := make(chan Task, nTasks)
|
|
go func() {
|
|
tasks := make([]Task, nTasks)
|
|
tasks[0].Location = initLoc
|
|
tasks[0].Op = initOp
|
|
for i := 1; i < len(tasks); i++ {
|
|
tasks[i].Location = newLocation(dim)
|
|
}
|
|
method.Run(operations, results, tasks)
|
|
}()
|
|
|
|
// Algorithmic Overview:
|
|
// There are three pieces to performing a concurrent optimization,
|
|
// the distributor, the workers, and the stats combiner. At a high level,
|
|
// the distributor reads in tasks sent by method, sending evaluations to the
|
|
// workers, and forwarding other operations to the statsCombiner. The workers
|
|
// read these forwarded evaluation tasks, evaluate the relevant parts of Problem
|
|
// and forward the results on to the stats combiner. The stats combiner reads
|
|
// in results from the workers, as well as tasks from the distributor, and
|
|
// uses them to update optimization statistics (function evaluations, etc.)
|
|
// and to check optimization convergence.
|
|
//
|
|
// The complicated part is correctly shutting down the optimization. The
|
|
// procedure is as follows. First, the stats combiner closes done and sends
|
|
// a PostIteration to the method. The distributor then reads that done has
|
|
// been closed, and closes the channel with the workers. At this point, no
|
|
// more evaluation operations will be executed. As the workers finish their
|
|
// evaluations, they forward the results onto the stats combiner, and then
|
|
// signal their shutdown to the stats combiner. When all workers have successfully
|
|
// finished, the stats combiner closes the results channel, signaling to the
|
|
// method that all results have been collected. At this point, the method
|
|
// may send MajorIteration(s) to update an optimum location based on these
|
|
// last returned results, and then the method will close the operations channel.
|
|
// The Method must ensure that the closing of results happens before the
|
|
// closing of operations in order to ensure proper shutdown order.
|
|
// Now that no more tasks will be commanded by the method, the distributor
|
|
// closes statsChan, and with no more statistics to update the optimization
|
|
// concludes.
|
|
|
|
workerChan := make(chan Task) // Delegate tasks to the workers.
|
|
statsChan := make(chan Task) // Send evaluation updates.
|
|
done := make(chan struct{}) // Communicate the optimization is done.
|
|
|
|
// Read tasks from the method and distribute as appropriate.
|
|
distributor := func() {
|
|
for {
|
|
select {
|
|
case task := <-operations:
|
|
switch task.Op {
|
|
case InitIteration:
|
|
panic("optimize: Method returned InitIteration")
|
|
case PostIteration:
|
|
panic("optimize: Method returned PostIteration")
|
|
case NoOperation, MajorIteration, MethodDone:
|
|
statsChan <- task
|
|
default:
|
|
if !task.Op.isEvaluation() {
|
|
panic("optimize: expecting evaluation operation")
|
|
}
|
|
workerChan <- task
|
|
}
|
|
case <-done:
|
|
// No more evaluations will be sent, shut down the workers, and
|
|
// read the final tasks.
|
|
close(workerChan)
|
|
for task := range operations {
|
|
if task.Op == MajorIteration {
|
|
statsChan <- task
|
|
}
|
|
}
|
|
close(statsChan)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
go distributor()
|
|
|
|
// Evaluate the Problem concurrently.
|
|
worker := func() {
|
|
x := make([]float64, dim)
|
|
for task := range workerChan {
|
|
evaluate(prob, task.Location, task.Op, x)
|
|
statsChan <- task
|
|
}
|
|
// Signal successful worker completion.
|
|
statsChan <- Task{Op: signalDone}
|
|
}
|
|
for i := 0; i < nTasks; i++ {
|
|
go worker()
|
|
}
|
|
|
|
var (
|
|
workersDone int // effective wg for the workers
|
|
status Status
|
|
err error
|
|
finalStatus Status
|
|
finalError error
|
|
)
|
|
|
|
// Update optimization statistics and check convergence.
|
|
var methodDone bool
|
|
for task := range statsChan {
|
|
switch task.Op {
|
|
default:
|
|
if !task.Op.isEvaluation() {
|
|
panic("minimize: evaluation task expected")
|
|
}
|
|
updateEvaluationStats(stats, task.Op)
|
|
status, err = checkEvaluationLimits(prob, stats, settings)
|
|
case signalDone:
|
|
workersDone++
|
|
if workersDone == nTasks {
|
|
close(results)
|
|
}
|
|
continue
|
|
case NoOperation:
|
|
// Just send the task back.
|
|
case MajorIteration:
|
|
status = performMajorIteration(optLoc, task.Location, stats, converger, startTime, settings)
|
|
case MethodDone:
|
|
methodDone = true
|
|
status = MethodConverge
|
|
}
|
|
if settings.Recorder != nil && status == NotTerminated && err == nil {
|
|
stats.Runtime = time.Since(startTime)
|
|
// Allow err to be overloaded if the Recorder fails.
|
|
err = settings.Recorder.Record(task.Location, task.Op, stats)
|
|
if err != nil {
|
|
status = Failure
|
|
}
|
|
}
|
|
// If this is the first termination status, trigger the conclusion of
|
|
// the optimization.
|
|
if status != NotTerminated || err != nil {
|
|
select {
|
|
case <-done:
|
|
default:
|
|
finalStatus = status
|
|
finalError = err
|
|
results <- Task{
|
|
Op: PostIteration,
|
|
}
|
|
close(done)
|
|
}
|
|
}
|
|
|
|
// Send the result back to the Problem if there are still active workers.
|
|
if workersDone != nTasks && task.Op != MethodDone {
|
|
results <- task
|
|
}
|
|
}
|
|
// This code block is here rather than above to ensure Status() is not called
|
|
// before Method.Run closes operations.
|
|
if methodDone {
|
|
statuser, ok := method.(Statuser)
|
|
if !ok {
|
|
panic("optimize: method returned MethodDone but is not a Statuser")
|
|
}
|
|
finalStatus, finalError = statuser.Status()
|
|
if finalStatus == NotTerminated {
|
|
panic("optimize: method returned MethodDone but a NotTerminated status")
|
|
}
|
|
}
|
|
return finalStatus, finalError
|
|
}
|
|
|
|
func defaultFunctionConverge() *FunctionConverge {
|
|
return &FunctionConverge{
|
|
Absolute: 1e-10,
|
|
Iterations: 100,
|
|
}
|
|
}
|
|
|
|
// newLocation allocates a new locatian structure with an X field of the
|
|
// appropriate size.
|
|
func newLocation(dim int) *Location {
|
|
return &Location{
|
|
X: make([]float64, dim),
|
|
}
|
|
}
|
|
|
|
// getInitLocation checks the validity of initLocation and initOperation and
|
|
// returns the initial values as a *Location.
|
|
func getInitLocation(dim int, initX []float64, initValues *Location) (Operation, *Location) {
|
|
loc := newLocation(dim)
|
|
if initX == nil {
|
|
if initValues != nil {
|
|
panic("optimize: initValues is non-nil but no initial location specified")
|
|
}
|
|
return NoOperation, loc
|
|
}
|
|
copy(loc.X, initX)
|
|
if initValues == nil {
|
|
return NoOperation, loc
|
|
} else {
|
|
if initValues.X != nil {
|
|
panic("optimize: location specified in InitValues (only use InitX)")
|
|
}
|
|
}
|
|
loc.F = initValues.F
|
|
op := FuncEvaluation
|
|
if initValues.Gradient != nil {
|
|
if len(initValues.Gradient) != dim {
|
|
panic("optimize: initial gradient does not match problem dimension")
|
|
}
|
|
loc.Gradient = initValues.Gradient
|
|
op |= GradEvaluation
|
|
}
|
|
if initValues.Hessian != nil {
|
|
if initValues.Hessian.Symmetric() != dim {
|
|
panic("optimize: initial Hessian does not match problem dimension")
|
|
}
|
|
loc.Hessian = initValues.Hessian
|
|
op |= HessEvaluation
|
|
}
|
|
return op, loc
|
|
}
|
|
|
|
func checkOptimization(p Problem, dim int, recorder Recorder) error {
|
|
if p.Func == nil {
|
|
panic(badProblem)
|
|
}
|
|
if dim <= 0 {
|
|
panic("optimize: impossible problem dimension")
|
|
}
|
|
if p.Status != nil {
|
|
_, err := p.Status()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
if recorder != nil {
|
|
err := recorder.Init()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// evaluate evaluates the routines specified by the Operation at loc.X, and stores
|
|
// the answer into loc. loc.X is copied into x before evaluating in order to
|
|
// prevent the routines from modifying it.
|
|
func evaluate(p *Problem, loc *Location, op Operation, x []float64) {
|
|
if !op.isEvaluation() {
|
|
panic(fmt.Sprintf("optimize: invalid evaluation %v", op))
|
|
}
|
|
copy(x, loc.X)
|
|
if op&FuncEvaluation != 0 {
|
|
loc.F = p.Func(x)
|
|
}
|
|
if op&GradEvaluation != 0 {
|
|
// Make sure we have a destination in which to place the gradient.
|
|
// TODO(kortschak): Consider making this a check of len(loc.Gradient) != 0
|
|
// to allow reuse of the slice.
|
|
if loc.Gradient == nil {
|
|
loc.Gradient = make([]float64, len(x))
|
|
}
|
|
p.Grad(loc.Gradient, x)
|
|
}
|
|
if op&HessEvaluation != 0 {
|
|
// Make sure we have a destination in which to place the Hessian.
|
|
// TODO(kortschak): Consider making this a check of loc.Hessian.IsZero()
|
|
// to allow reuse of the matrix.
|
|
if loc.Hessian == nil {
|
|
loc.Hessian = mat.NewSymDense(len(x), nil)
|
|
}
|
|
p.Hess(loc.Hessian, x)
|
|
}
|
|
}
|
|
|
|
// updateEvaluationStats updates the statistics based on the operation.
|
|
func updateEvaluationStats(stats *Stats, op Operation) {
|
|
if op&FuncEvaluation != 0 {
|
|
stats.FuncEvaluations++
|
|
}
|
|
if op&GradEvaluation != 0 {
|
|
stats.GradEvaluations++
|
|
}
|
|
if op&HessEvaluation != 0 {
|
|
stats.HessEvaluations++
|
|
}
|
|
}
|
|
|
|
// checkLocationConvergence checks if the current optimal location satisfies
|
|
// any of the convergence criteria based on the function location.
|
|
//
|
|
// checkLocationConvergence returns NotTerminated if the Location does not satisfy
|
|
// the convergence criteria given by settings. Otherwise a corresponding status is
|
|
// returned.
|
|
// Unlike checkLimits, checkConvergence is called only at MajorIterations.
|
|
func checkLocationConvergence(loc *Location, settings *Settings, converger Converger) Status {
|
|
if math.IsInf(loc.F, -1) {
|
|
return FunctionNegativeInfinity
|
|
}
|
|
if loc.Gradient != nil && settings.GradientThreshold > 0 {
|
|
norm := floats.Norm(loc.Gradient, math.Inf(1))
|
|
if norm < settings.GradientThreshold {
|
|
return GradientThreshold
|
|
}
|
|
}
|
|
return converger.Converged(loc)
|
|
}
|
|
|
|
// checkEvaluationLimits checks the optimization limits after an evaluation
|
|
// Operation. It checks the number of evaluations (of various kinds) and checks
|
|
// the status of the Problem, if applicable.
|
|
func checkEvaluationLimits(p *Problem, stats *Stats, settings *Settings) (Status, error) {
|
|
if p.Status != nil {
|
|
status, err := p.Status()
|
|
if err != nil || status != NotTerminated {
|
|
return status, err
|
|
}
|
|
}
|
|
if settings.FuncEvaluations > 0 && stats.FuncEvaluations >= settings.FuncEvaluations {
|
|
return FunctionEvaluationLimit, nil
|
|
}
|
|
if settings.GradEvaluations > 0 && stats.GradEvaluations >= settings.GradEvaluations {
|
|
return GradientEvaluationLimit, nil
|
|
}
|
|
if settings.HessEvaluations > 0 && stats.HessEvaluations >= settings.HessEvaluations {
|
|
return HessianEvaluationLimit, nil
|
|
}
|
|
return NotTerminated, nil
|
|
}
|
|
|
|
// checkIterationLimits checks the limits on iterations affected by MajorIteration.
|
|
func checkIterationLimits(loc *Location, stats *Stats, settings *Settings) Status {
|
|
if settings.MajorIterations > 0 && stats.MajorIterations >= settings.MajorIterations {
|
|
return IterationLimit
|
|
}
|
|
if settings.Runtime > 0 && stats.Runtime >= settings.Runtime {
|
|
return RuntimeLimit
|
|
}
|
|
return NotTerminated
|
|
}
|
|
|
|
// performMajorIteration does all of the steps needed to perform a MajorIteration.
|
|
// It increments the iteration count, updates the optimal location, and checks
|
|
// the necessary convergence criteria.
|
|
func performMajorIteration(optLoc, loc *Location, stats *Stats, converger Converger, startTime time.Time, settings *Settings) Status {
|
|
optLoc.F = loc.F
|
|
copy(optLoc.X, loc.X)
|
|
if loc.Gradient == nil {
|
|
optLoc.Gradient = nil
|
|
} else {
|
|
if optLoc.Gradient == nil {
|
|
optLoc.Gradient = make([]float64, len(loc.Gradient))
|
|
}
|
|
copy(optLoc.Gradient, loc.Gradient)
|
|
}
|
|
stats.MajorIterations++
|
|
stats.Runtime = time.Since(startTime)
|
|
status := checkLocationConvergence(optLoc, settings, converger)
|
|
if status != NotTerminated {
|
|
return status
|
|
}
|
|
return checkIterationLimits(optLoc, stats, settings)
|
|
}
|